研究生: |
鄭宏毅 Cheng,Hung-Yi |
---|---|
論文名稱: |
以除法代數設計用於頻率非選擇性衰退通道之時空碼 Space-Time Code Design over Frequency-Nonselective Fading Channels by Division Algebras |
指導教授: |
呂忠津
Lu,Chung-Chin |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2008 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 54 |
中文關鍵詞: | 時空碼 、除法代數 、迴旋碼 |
外文關鍵詞: | space-time code, division algebras, convolutional code |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
多媒體的高品質與高碼率要求,在未來無線通訊系統中越來越顯得重要。近年來,透過多傳送與接收天線在頻率非選擇性衰退通道下通訊之研究引起廣大的注意。其中一種方法為藉由提高傳送或接受端之天線數,以符合高通道容量與高碼率之要求,而時間空間碼建構方式普遍地被利用於多重傳送與接收天線系統上。此外,線性調變是一種簡單且快速的調變機制,在數位無線通訊上有著廣泛的利用。但是傳統時間空間碼線性調變結構,在頻率非選擇性衰退通道下將不再適用。事實上,在移動無線通訊系統內,傳送端與接受端天線數量受到極大限制。必須發展出在少量天線條件下,依然有高品質傳輸效率之編碼方式。
在本論文中,我們推導出在頻率非選擇性衰退通道下線性調變之時間空間碼設計準則,此準則是基於特殊的時間空間碼架構模型,此模型包括一個迴旋編碼器及一個空間編碼器。在相同的天線條件下,迴旋編碼器將提供更高的多重性增益,以保持高品質的傳輸率。而除法代數提供簡單的數學模式來建造線性調變之時間空間碼,以符合所推導出的時空碼準則。另外,我們放置一個交錯器於迴旋編碼器與空間編碼器間,以對抗與時間相關之衰退通道。而解碼結構為一個交解碼器與一個維特比解碼器。最後在相同頻寬效率下不同時間空間編碼做模擬圖之比較與探討。
In this thesis, we derive a new space-time code design criterion for linear modulation over frequency-nonselective fading channels. In order to achieve maximum transmit spatial diversity, we first adopt a method in the literature to use division algebras to design an inner space-time code length equal to the number of transmit antennas. Then this short inner space-time code in concatenated with a ring systematic convolutional encoder to encode a space-time code of full length to achieve the maximum transmit diversity. For practical channels, we place an interleaver between convolutional encoder and the mini space-time encoder to combat the correlated fading. Both theoretical analytic and simulation results show that our proposed coding scheme is very effective.
[1] G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading environment," Wireless Personal Commun., vol. 6, pp. 311-335, Mar. 1998.
[2] I. E. Teletar, “Capacity of multi-antenna Gaussian channels," Europ. Trans. Telecommun., vol. 10, no. 6, pp. 585{595, Nov./Dec. 1999.
[3] S. M. Alamouti, “A simple transmit diversity technique for wireless communications," IEEE J. Select. Areas Commun., vol. 16, pp. 1451-1458, Oct. 1998.
[4] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for high data rate wireless communication: performance criterion and code construction," IEEE
Trans. Inform. Theory, vol. 44, no. 2, pp. 744-765, Mar. 1998.
[5] M. R. Bell, J.-C. Guey, M. P. Fitz, and W. Kou, “Signal design for transmitter diversity wireless communication systems over Rayleigh fading channels," IEEE
Trans. Commun., vol. 47, Apr 1999.
[6] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block codes from orthogonal designs," IEEE Trans. Inform. Theory, vol. 45, no. 5, pp. 1456-1467, Jul. 1999.
[7] B. Hassibi and B. M. Hochwald, “High-rate codes that are linear in space and time," IEEE Trans. Inform. Theory, vol. 48, no. 7, pp. 1804-1824, July 2002.
[8] B. A. Sethuraman, B. S. Rajan, and V. Shashidhar, “Full-diversity, high-rate space-time block codes from division algebras," IEEE Trans. Inform. Theory, vol. 49,
no. 10, pp. 2596-2616, Oct. 2003.
[9] C.-C. Cheng and C.-C. Lu, “Space-time code design for CPFSK modulation over frequency-nonselective fading channels," IEEE Trans. Commun., vol. 53, no. 9, pp.
1477-1489, Sep. 2005.
[10] M.-C. Shih. “Space-time code design for QPSK modulation over frequency-nonselective fading channels," Master's thesis, National Tsing Hua Uni-
versity, Taiwan, 2007.
[11] F. Oggier, G. Rekaya, and J.-C. Belore, “Perfect space-time block codes," IEEE Trans. Inform. Theory, vol. 52, no. 9, pp. 3885-3902, Sep 2006.
[12] D. Ionecu, “New results on space-time code design criteria," in IEEE Wirellss Communication and Networking Confrernce.
[13] H. Jafarknani, Space-Time Coding Theory and Practice. Cambridge Univerisy Press, 2005.
[14] J. G.Proakis, Digital Communications, 4th edn. McGraw-Hill, 2001.
[15] T. W.Hungerford, Algebra, J. Ewing, F. Gehring, and P.R.Halmos, Eds. New York: Springer-Verlag, 1974.
[16] S. H. Friedberg, A. J. Insel, and L. E. Spence, Linear Algebras, 4th edn. Pearson Education, 2003.
[17] R. J. McEliece, Finite Fields for Computer Scientists and Engineers. Kluwer, 1989.
[18] S. H. Jamali and T. Le-Ngoc, Coded-Modulation Technique for Fading Channels. Boston, MA: Kluwer, 1994.
[19] C.-C. Lu and C.-Y. Kuo, “Optimal trellis design and labeling of trellis coded MPSK for Rayleigh fading channels," to be submitted for publication.
[20] C.-L. Hsiao and C.-C. Lu, “On the design of optimal (2,1) Z2-convolutional coded CPFSK over Rayleigh fading channels," in Proc. ISIT 1998, Cambridge, MA, USA, Aug. 1998.
[21] W.-H. Gu and C.-C. Lu, “Rate l/(l + 1) convolutional encoders over rings with maximal free branch distance," in Proc. ISIT 2001, Washington, DC, USA, Jun. 2001.
[22] C.-C. Lu and J.-P. Chen, “An optimal test of Zq-convolutional coded CPFSK for communications over Rayleigh fading channels," to be submitted for publication.
[23] M. Cedervall and R. Johannesson, “A fast algorithm for computing distance spectrum of convolutional codes," IEEE Trans. Inform. Theory, vol. 35, no. 6, pp.
1146-1159, Nov. 1989.
[24] N. Jacobson, Basic Algebra I, 2nd edn. New York: W. H Freeman, 1985.