研究生: |
羅康閔 Lo, Kang-Min |
---|---|
論文名稱: |
4H碳化矽邏輯電路整合高壓雙離子注入與橫向擴散金氧半場效電晶體研究 Study on Logic Circuit Integration with High-Voltage DMOS and LDMOS in 4H-SiC |
指導教授: |
黃智方
Huang, Chih-Fang |
口試委員: |
崔秉鉞
趙得勝 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2020 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 77 |
中文關鍵詞: | 碳化矽 、邏輯電路 、互補式金氧半電晶體 、空乏式金氧半電晶體 |
外文關鍵詞: | D-mode inverter, DMOS |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
碳化矽(SiC)功率元件漸漸使用在各種功率電子應用,碳化矽二極體與金氧半場效電晶體已商業化,並且進入特定的商業市場,同時近年來試圖將碳化矽元件做單晶片整合,特別是應用在極端與惡劣環境下,碳化矽有其優勢。
本論文以4H-SiC為材料,探討1.2kV垂直型雙重離子注入金氧半場效電晶體(DMOS)在使用相同製程下整合水平型互補式金氧半場效電晶體(CMOS)邏輯電路的可能性,實驗結果顯示4H-SiC DMOS在不增加而外光罩下可以兼容整合CMOS邏輯電路,並且反向器與環型振盪器可以利用自身結構隔離耐高壓,NMOS、PMOS、CMOS、ring oscillator在175℃下特性良好,同時發現基板高壓會產生基體效應(body effect)影響PMOS與CMOS電性,但他們仍能正常操作在基板電壓800V時,ring oscillator也能操作在基板300V時,這些結果有望在4H-SiC中整合垂直型DMOS與水平型CMOS邏輯電路。
此外本論文也研究了水平型互補式金氧半導體與橫向擴散金屬氧化物半導體(LDMOS)整合在同一塊基板上,為了整合閘極驅動電路與600V功率MOSFETs,因此量測並探討低壓邏輯電路特性與高壓隔離結構的特性。
4H-silicon carbide (SiC) power components are gradually being used in various power electronic applications. SiC diodes and MOSFETs have been commercialized and entered specific commercial markets. In recent years, attempts have been made to integrate SiC components into a single chip, especially used in extreme and harsh environments where SiC has its advantages.
In this thesis 4H-SiC is used as the semiconductor material to explore possibility of integrating 1.2 kV vertical DMOS with horizontal CMOS logics with the same process technology. The experimental results show that CMOS logic circuits can be compatible and integrated with 4H-SiC DMOS without increasing the number of mask layers, and the inverter and ring oscillator can withstand high voltage using self-isolation. NMOS, PMOS, CMOS, and ring oscillator all have functional characteristics at 175°C. It is found that high substrate voltage will produce body effects that affect the electrical properties of PMOS and CMOS, but they can still operate at a substrate voltage of 800V. The ring oscillator can also operate at a substrate voltage of 300V. These results are promising for integration of vertical DMOS and CMOS logics in 4H-SiC.
In addition, this paper also studies the integration of CMOS and LDMOS on the same substrate in order to realize a gate driver circuit for 600 V power MOSFETs. The characteristics of low-voltage circuit operation and high-voltage isolation structures are measured and discussed.
[1] 顏誠廷, 碳化矽功率半導體元件,《電子資訊》功率電子專刊, 2014.
[2] R. Cheung, "Silicon Carbide Microelectromechanical Systems for Harsh Environments," Imperial College Press, 2006.
[3] R. Powell and L.B. Rowland, "SiC Material-Progress Status and Potential Roadblocks," IEEE Proc., Vol. 60, pp. 942-955, 2002
[4] T. P. Chow and R. Tyagi, "Wide Bandgap Compound Semiconductors for Superior High-Voltage Unipolar Power Devices," IEEE Trans. Electron Devices, Vol. 41, No. 8, pp. 1481–1483, Aug. 1994.
[5] M. Rogalla, "Particle Detectors Based on Semi-Insulating Silicon Carbide," Nucl. Phys. B (Proc. Suppl.), vol. 78, p. 516, 1999.
[6] F. Nava, P. Vanni, C. Lanzieri, and C. Canali, "Epitaxial Silicon Carbide Charge Particle Detectors," Nucl. Instrum. Methods Phys. Res. A, vol. 437, pp. 354–358, 1999.
[7] M. Bruzzi, F. Hartjes, S. Lagomarsino, F. Nava, S. Sciortino, and P. Vanni, "Recent Results on Particle Detection With Epitaxial SiC Schottky Diodes," in Proc. IEEE Nuclear Science Symp., Nov. 2002, pp. 14–17
[8] P. G. Neudeck, R. S. Okojie, and L.-Y. Chen, "High-temperature electronics - a role for wide bandgap semiconductors?," Proc. IEEE, vol. 90, no. 6, pp. 1065–1076, Jun. 2002.
[9] A. Lostetter, J. Hornberger, B. McPherson, B. Reese, R. Shaw, M. Schupbach, B. Rowden, A. Mantooth, J. Balda, T. Otsuka, K. Okumura, and M. Miura, "High-temperature silicon carbide and silicon on insulator based integrated power modules," in IEEE Vehicle Power and Propulsion Conference, 2009. VPPC ’09, 2009, pp. 1032–1035.
[10] M. Barlow, S. Ahmed, H. A. Mantooth and A. M. Francis, "An Integrated SiC CMOS Gate Driver," 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, 2016, pp. 1646-1649, doi: 10.1109/APEC.2016.7468087.
[11] Shamim Ahmed, "Modeling and Validation of 4H-SiC Low Voltage
MOSFETs for Integrated Circuit Design," University of Arkansas, May 2017.
[12] Tsunenobu Kimoto and James A. Cooper, "Fundamentals of Silicon Carbide Technology Growth, Characterization, Devices, and Applications," 2014 John Wiley & Sons Singapore Pte. Ltd.
[13] Donald A. Neamen, "Semiconductor Physics and Devices:Basic Principles, 4e," McGraw-Hill, 2012.