研究生: |
蔡 承 Tsai, Cheng |
---|---|
論文名稱: |
結合冷凍鑄造法與積層製造犧牲模板法開發具多階層孔洞結構之輕量化316L不鏽鋼多孔材 Fabrication of Hierarchically Porous 316L Stainless Steel Scaffolds by Freeze Casting and 3D-printed Sacrificial Templating Techniques |
指導教授: |
陳柏宇
Chen, Po-Yu |
口試委員: |
陳士勛
Chen, Shih-Hsun 蔡哲瑋 Tsai, Che-Wei |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2023 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 157 |
中文關鍵詞: | 316L不鏽鋼 、冷凍鑄造 、積層製造 、多階層結構 、多孔螺旋結構 |
外文關鍵詞: | 316L stainless steel, Freeze casting, 3D printing, Hierarchical structure, Gyroid scaffold |
相關次數: | 點閱:60 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
冷凍鑄造是近年來備受矚目的多孔材製造技術。利用溶液固化所形成的冰晶作為模板產生複雜的多孔結構,但同時保有製程簡單、結構多樣與廣泛的材料適用性等特質,使其在眾多多孔材料製程中擁有特殊的地位。然而,傳統冷凍鑄造以冰晶為模板也有其侷限,單一樣品之孔洞通常形貌單一且孔徑多分布在微米等級。本研究由自然界常見的多階層孔洞結構以及三期週期最小曲面(TPMS)為啟發,將多孔螺旋(gyroid)如周期性、對稱性、高滲透率以及孔洞連通性等優勢,整合於冷凍鑄造法使孔隙形態多樣化,從而實現更廣泛的應用並改善材料性能。
因其耐腐蝕、無毒和成本效益高等顯著特點,我們選用316L不鏽鋼作為原料。在冷凍鑄造過程中,我們結合了3D列印技術,使用高分子犧牲模板,試圖製備出孔徑可調控的多功能雙尺度多孔螺旋結構材料。透過掃描電子顯微鏡(SEM)和電腦斷層掃描(Micro-CT)確認了這種多階層結構的穩定性和週期性。壓縮測試和滲透率分析也證明了這種材料的多樣性和調控能力,並且在滲透率方面優於單一尺度的結構,顯示出其在生醫等領域的應用潛力。
Freeze casting is a foundational technique in porous scaffold fabrication, leveraging the solidification of liquid phases to craft intricate porous architectures. Benefiting from the simplicity, diversity, and broad material applicability that comes from using frozen liquids as sacrificial templates, it has distinct advantages over other porous material manufacturing processes. However, a notable constraint is that the conventional freeze casting method often results in scaffolds with a singular pore morphology, predominantly constrained to the micrometer scale, due to the inherent limitations of the ice template. Drawing inspiration from the hierarchical porous structures observed in natural systems and the triply periodic minimum surface (TPMS) structure, we sought to overcome the limitations of traditional freeze casting techniques. The intricate nature of the TPMS, especially the gyroid structure, offers properties such as periodicity, symmetry, high permeability, and seamless interconnectivity of pores. By integrating these designs into our fabrication approach, we aimed to diversify pore morphologies, allowing for a broader range of applications and improved material properties.
In our study, we chose 316L stainless steel for its notable attributes: corrosion resistance, non-toxicity, and cost-effectiveness. Furthermore, we incorporated additive-manufactured polymeric templates into the freeze casting process to develop a dual-templating technique. The scaffolds were characterized by SEM, showing micrometer-scale lamellar structures and micro-CT highlighting millimeter-scale TPMS-inspired porosity. For further characterization, Mechanical properties were analyzed through compressive testing, highlighting the tunability of dual-scale scaffolds through the choice of polymeric templates. Observations were made on the thermal properties of the dual-scale scaffolds. Subsequently, permeability assessments revealed that these scaffolds exhibited enhanced fluid dynamics, significantly surpassing the performance of single-scale designs, promising broader applications in diverse fields and optimized performance.
[1] Liao, G., Zuo, H., Cao, Y., & Shi, T. (2010). Optical properties of the micro/nano structures of Morpho butterfly wing scales. Science in China Series E: Technological Sciences, 53, 175-181.
[2] Sato, O., Kubo, S., & Gu, Z.-Z. (2009). Structural color films with lotus effects, superhydrophilicity, and tunable stop-bands. Accounts of Chemical Research, 42(1), 1-10.
[3] Bello, E., Chen, Y., & Alleyne, M. (2022). Staying Dry and Clean: An Insect’s Guide to Hydrophobicity. Insects, 14(1), 42.
[4] Jia, L., Jiang, J., Xiang, T., & Zhou, S. (2022). Multifunctional biomimetic microstructured surfaces for healthcare applications. Advanced Materials Interfaces, 9(33), 2201270.
[5] Liu, X., & Ma, P. X. (2004). Polymeric scaffolds for bone tissue engineering. Annals of biomedical engineering, 32, 477-486.
[6] Launey, M. E., Buehler, M. J., & Ritchie, R. O. (2010). On the mechanistic origins of toughness in bone. Annual review of materials research, 40, 25-53.
[7] Chen, Y., Kent, D., Bermingham, M., Dehghan-Manshadi, A., Wang, G., Wen, C., & Dargusch, M. (2017). Manufacturing of graded titanium scaffolds using a novel space holder technique. Bioactive Materials, 2(4), 248-252.
[8] Alves, A., Sendão, I., Ariza, E., Toptan, F., Ponthiaux, P., & Pinto, A. (2016). Corrosion behaviour of porous Ti intended for biomedical applications. Journal of Porous Materials, 23, 1261-1268.
[9] Nowacki, J., Krajewski, S., & Grabian, J. (2014). Problems of aluminum foam soldering. Welding Technology Review, 86(1).
[10] Liang, H., Yang, Y., Xie, D., Li, L., Mao, N., Wang, C., Tian, Z., Jiang, Q., & Shen, L. (2019). Trabecular-like Ti-6Al-4V scaffolds for orthopedic: fabrication by selective laser melting and in vitro biocompatibility. Journal of Materials Science & Technology, 35(7), 1284-1297.
[11] Arifvianto, B., & Zhou, J. (2014). Fabrication of metallic biomedical scaffolds with the space holder method: a review. Materials, 7(5), 3588-3622.
[12] Hübner, C., Vadalà, M., Voges, K., & Lupascu, D. (2023). Poly (vinyl alcohol) freeze casts with nano-additives as potential thermal insulators. Scientific Reports, 13(1), 1020.
[13] Loh, Q. L., & Choong, C. (2013). Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size.
[14] John, J. V., McCarthy, A., Wang, H., Luo, Z., Li, H., Wang, Z., Cheng, F., Zhang, Y. S., & Xie, J. (2021). Freeze‐Casting with 3D‐Printed Templates Creates Anisotropic Microchannels and Patterned Macrochannels within Biomimetic Nanofiber Aerogels for Rapid Cellular Infiltration. Advanced healthcare materials, 10(12), 2100238.
[15] Jung, J.-Y., Naleway, S. E., Maker, Y. N., Kang, K. Y., Lee, J., Ha, J., Hur, S. S., Chien, S., & McKittrick, J. (2019). 3D printed templating of extrinsic freeze-casting for macro–microporous biomaterials. ACS Biomaterials Science & Engineering, 5(5), 2122-2133.
[16] Cao, X., Xu, D., Yao, Y., Han, L., Terasaki, O., & Che, S. (2016). Interconversion of triply periodic constant mean curvature surface structures: From double diamond to single gyroid. CHEMISTRY of Materials, 28(11), 3691-3702.
[17] Yan, C., Hao, L., Hussein, A., & Young, P. (2015). Ti–6Al–4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting. Journal of the mechanical behavior of biomedical materials, 51, 61-73.
[18] Han, L., & Che, S. (2018). An overview of materials with triply periodic minimal surfaces and related geometry: from biological structures to self‐assembled systems. Advanced Materials, 30(17), 1705708.
[19] Qu, S., Ding, J., & Song, X. (2021). Achieving triply periodic minimal surface thin-walled structures by micro laser powder bed fusion process. Micromachines, 12(6), 705.
[20] Yoo, D.-J. (2011). Computer-aided porous scaffold design for tissue engineering using triply periodic minimal surfaces. International Journal of Precision Engineering and Manufacturing, 12, 61-71.
[21] Szatkiewicz, T., Laskowska, D., Bałasz, B., & Mitura, K. (2022). The Influence of the Structure Parameters on the Mechanical Properties of Cylindrically Mapped Gyroid TPMS Fabricated by Selective Laser Melting with 316L Stainless Steel Powder. Materials, 15(12), 4352.
[22] Castro, A., Pires, T., Santos, J., Gouveia, B., & Fernandes, P. (2019). Permeability versus design in TPMS scaffolds. Materials, 12(8), 1313.
[23] Das, S., Heasman, P., Ben, T., & Qiu, S. (2017). Porous organic materials: strategic design and structure–function correlation. Chemical Reviews, 117(3), 1515-1563.
[24] ALOthman, Z. A. (2012). A review: fundamental aspects of silicate mesoporous materials. Materials, 5(12), 2874-2902.
[25] Harte, A.-M., Fleck, N. A., & Ashby, M. F. (1999). Fatigue failure of an open cell and a closed cell aluminium alloy foam. Acta materialia, 47(8), 2511-2524.
[26] Zdravkov, B., Čermák, J., Šefara, M., & Janků, J. (2007). Pore classification in the characterization of porous materials: A perspective. Open Chemistry, 5(2), 385-395.
[27] Taguchi, A., & Schüth, F. (2005). Ordered mesoporous materials in catalysis. Microporous and mesoporous materials, 77(1), 1-45.
[28] Corma, A. (1997). From microporous to mesoporous molecular sieve materials and their use in catalysis. Chemical Reviews, 97(6), 2373-2420.
[29] Yang, X.-Y., Chen, L.-H., Li, Y., Rooke, J. C., Sanchez, C., & Su, B.-L. (2017). Hierarchically porous materials: synthesis strategies and structure design. Chemical Society Reviews, 46(2), 481-558.
[30] Jiang, F., Li, T., Li, Y., Zhang, Y., Gong, A., Dai, J., Hitz, E., Luo, W., & Hu, L. (2018). Wood‐based nanotechnologies toward sustainability. Advanced Materials, 30(1), 1703453.
[31] Liu, C., Luan, P., Li, Q., Cheng, Z., Xiang, P., Liu, D., Hou, Y., Yang, Y., & Zhu, H. (2021). Biopolymers derived from trees as sustainable multifunctional materials: a review. Advanced Materials, 33(28), 2001654.
[32] Ye, R., Chyan, Y., Zhang, J., Li, Y., Han, X., Kittrell, C., & Tour, J. M. (2017). Laser‐induced graphene formation on wood. Advanced Materials, 29(37), 1702211.
[33] Sun, M.-H., Huang, S.-Z., Chen, L.-H., Li, Y., Yang, X.-Y., Yuan, Z.-Y., & Su, B.-L. (2016). Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chemical Society Reviews, 45(12), 3479-3563.
[34] Cai, C., Guo, S., Li, B., Tian, Y., Dong Qiu, J. C., Sun, C.-N., Yan, C., Qi, H. J., & Zhou, K. (2021). 3D printing and chemical dealloying of a hierarchically micro-and nanoporous catalyst for wastewater purification. ACS Applied Materials & Interfaces, 13(41), 48709-48719.
[35] Song, H., Xu, S., Li, Y., Dai, J., Gong, A., Zhu, M., Zhu, C., Chen, C., Chen, Y., & Yao, Y. (2018). Hierarchically porous, ultrathick,“breathable” wood‐derived cathode for lithium‐oxygen batteries. Advanced Energy Materials, 8(4), 1701203.
[36] Guan, H., Meng, J., Cheng, Z., & Wang, X. (2020). Processing natural wood into a high-performance flexible pressure sensor. ACS Applied Materials & Interfaces, 12(41), 46357-46365.
[37] Fan, J., Abedi-Dorcheh, K., Sadat Vaziri, A., Kazemi-Aghdam, F., Rafieyan, S., Sohrabinejad, M., Ghorbani, M., Rastegar Adib, F., Ghasemi, Z., & Klavins, K. (2022). A review of recent advances in natural polymer-based scaffolds for musculoskeletal tissue engineering. Polymers, 14(10), 2097.
[38] Kumar, N., Kumar, A., Uniyal, P., Ramalingaiah, B., Sharma, S., Goni, V. G., Aggarwal, S., Bhadada, S. K., & Bhushan, B. (2020). Mimicking high strength lightweight novel structures inspired from the trabecular bone microarchitecture. Philosophical Transactions of the Royal Society A, 378(2167), 20190448.
[39] Santos, L., Silva, J., Cartaxo, J., Rodrigues, A., Neves, G., & Menezes, R. (2021). Freeze-casting applied to ceramic materials: a short review of the influence of processing parameters. Cerâmica, 67, 1-13.
[40] Liu, P., & Chen, G. (2014). Making porous metals. Porous materials, 21-112.
[41] Dudina, D. V., Bokhonov, B. B., & Olevsky, E. A. (2019). Fabrication of porous materials by spark plasma sintering: a review. Materials, 12(3), 541.
[42] Bordia, R. K., Kang, S. J. L., & Olevsky, E. A. (2017). Current understanding and future research directions at the onset of the next century of sintering science and technology. Journal of the American Ceramic Society, 100(6), 2314-2352.
[43] Rybakov, K. I., Olevsky, E. A., & Krikun, E. V. (2013). Microwave sintering: fundamentals and modeling. Journal of the American Ceramic Society, 96(4), 1003-1020.
[44] Banhart, J. (2000). Manufacturing routes for metallic foams. Jom, 52, 22-27.
[45] Banhart, J. (2005). Aluminium foams for lighter vehicles. International Journal of vehicle design, 37(2-3), 114-125.
[46] Lin, C. Y., & Slattery, J. (1982). Thinning of a liquid film as a small drop or bubble approaches a fluid–fluid interface. AIChE Journal, 28(5), 786-792.
[47] Hiemenz, P. C. (1972). The role of van der Waals forces in surface and colloid chemistry. Journal of Chemical Education, 49(3), 164.
[48] Banhart, J. (2001). Manufacture, characterisation and application of cellular metals and metal foams. Progress in materials science, 46(6), 559-632.
[49] Franks, G. V., Chuanuwatanakul, C., & Tallon, C. (2012). Particle-stabilized foams for advanced ceramic component production. Chemistry Letters, 41(10), 1360-1362.
[50] Chen, Y., Zhang, X., Parvez, M. M., & Liou, F. (2020). A review on metallic alloys fabrication using elemental powder blends by laser powder directed energy deposition process. Materials, 13(16), 3562.
[51] Dass, A., & Moridi, A. (2019). State of the art in directed energy deposition: From additive manufacturing to materials design. Coatings, 9(7), 418.
[52] Sun, S., Brandt, M., & Easton, M. (2017). Powder bed fusion processes: An overview. Laser additive manufacturing, 55-77.
[53] Sutton, A. T., Kriewall, C. S., Leu, M. C., & Newkirk, J. W. (2017). Powder characterisation techniques and effects of powder characteristics on part properties in powder-bed fusion processes. Virtual and physical prototyping, 12(1), 3-29.
[54] Vock, S., Klöden, B., Kirchner, A., Weißgärber, T., & Kieback, B. (2019). Powders for powder bed fusion: a review. Progress in Additive Manufacturing, 4, 383-397.
[55] Ahn, D.-G. (2021). Directed energy deposition (DED) process: State of the art. International Journal of Precision Engineering and Manufacturing-Green Technology, 8, 703-742.
[56] Gibson, I., Rosen, D., Stucker, B., Gibson, I., Rosen, D., & Stucker, B. (2015). Directed energy deposition processes. Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing, 245-268.
[57] Li, M., Du, W., Elwany, A., Pei, Z., & Ma, C. (2020). Metal binder jetting additive manufacturing: a literature review. Journal of Manufacturing Science and Engineering, 142(9), 090801.
[58] Bai, Y., & Williams, C. B. (2015). An exploration of binder jetting of copper. Rapid Prototyping Journal, 21(2), 177-185.
[59] Lv, Y., Wang, B., Liu, G., Tang, Y., Lu, E., Xie, K., Lan, C., Liu, J., Qin, Z., & Wang, L. (2021). Metal material, properties and design methods of porous biomedical scaffolds for additive manufacturing: A review. Frontiers in Bioengineering and Biotechnology, 9, 641130.
[60] Wauthle, R., Ahmadi, S. M., Yavari, S. A., Mulier, M., Zadpoor, A. A., Weinans, H., Van Humbeeck, J., Kruth, J.-P., & Schrooten, J. (2015). Revival of pure titanium for dynamically loaded porous implants using additive manufacturing. Materials Science and Engineering: C, 54, 94-100.
[61] Buchanan, C., & Gardner, L. (2019). Metal 3D printing in construction: A review of methods, research, applications, opportunities and challenges. Engineering Structures, 180, 332-348.
[62] Yadollahi, A., & Shamsaei, N. (2017). Additive manufacturing of fatigue resistant materials: Challenges and opportunities. International Journal of Fatigue, 98, 14-31.
[63] Pattnaik, S., Karunakar, D. B., & Jha, P. K. (2012). Developments in investment casting process—A review. Journal of Materials Processing Technology, 212(11), 2332-2348.
[64] Hejtmánek, V., & Čapek, P. (2012). 3D Microstructure Modeling of Porous Metal Filters. Metals, 2(3), 344-352.
[65] Banhart, J. (2013). Light‐metal foams—history of innovation and technological challenges. Advanced Engineering Materials, 15(3), 82-111.
[66] Ninpetch, P., Kowitwarangkul, P., Mahathanabodee, S., Chalermkarnnon, P., & Ratanadecho, P. (2020). A review of computer simulations of metal 3D printing. AIP Conference Proceedings,
[67] Selema, A., Ibrahim, M. N., & Sergeant, P. (2022). Metal additive manufacturing for electrical machines: Technology review and latest advancements. Energies, 15(3), 1076.
[68] Shao, G., Hanaor, D. A., Shen, X., & Gurlo, A. (2020). Freeze casting: from low‐dimensional building blocks to aligned porous structures—a review of novel materials, methods, and applications. Advanced Materials, 32(17), 1907176.
[69] Deville, S. (2010). Freeze-casting of porous biomaterials: structure, properties and opportunities. Materials, 3(3), 1913-1927.
[70] Wegst, U. G., Schecter, M., Donius, A. E., & Hunger, P. M. (2010). Biomaterials by freeze casting. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1917), 2099-2121.
[71] Szepes, A., Feher, A., Szabó‐Révész, P., & Ulrich, J. (2007). Influence of Freezing Temperature on Product Parameters of Solid Dosage Forms Prepared via the Freeze‐Casting Technique. Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology, 30(4), 511-516.
[72] Bolling, G., & Cisse, J. (1971). A theory for the interaction of particles with a solidifying front. Journal of Crystal Growth, 10(1), 56-66.
[73] Stefanescu, D. M., Dhindaw, B., Kacar, S., & Moitra, A. (1988). Behavior of ceramic particles at the solid-liquid metal interface in metal matrix composites. Metallurgical Transactions A, 19, 2847-2855.
[74] Körber, C., Rau, G., Cosman, M., & Cravalho, E. (1985). Interaction of particles and a moving ice-liquid interface. Journal of Crystal Growth, 72(3), 649-662.
[75] Uhlmann, D. R., Chalmers, B., & Jackson, K. (1964). Interaction between particles and a solid‐liquid interface. Journal of Applied Physics, 35(10), 2986-2993.
[76] Zhang, H., Hussain, I., Brust, M., Butler, M. F., Rannard, S. P., & Cooper, A. I. (2005). Aligned two-and three-dimensional structures by directional freezing of polymers and nanoparticles. Nature materials, 4(10), 787-793.
[77] Munch, E., Saiz, E., Tomsia, A. P., & Deville, S. (2009). Architectural control of freeze‐cast ceramics through additives and templating. Journal of the American Ceramic Society, 92(7), 1534-1539.
[78] Wu, Y., Yi, N., Huang, L., Zhang, T., Fang, S., Chang, H., Li, N., Oh, J., Lee, J. A., & Kozlov, M. (2015). Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson’s ratio. Nature communications, 6(1), 6141.
[79] Dittmann, J., & Willenbacher, N. (2014). Micro structural investigations and mechanical properties of macro porous ceramic materials from capillary suspensions. Journal of the American Ceramic Society, 97(12), 3787-3792.
[80] Roscow, J. I., Zhang, Y., Kraśny, M. J., Lewis, R., Taylor, J., & Bowen, C. R. (2018). Freeze cast porous barium titanate for enhanced piezoelectric energy harvesting. Journal of Physics D: Applied Physics, 51(22), 225301.
[81] Deville, S., Saiz, E., & Tomsia, A. P. (2007). Ice-templated porous alumina structures. Acta materialia, 55(6), 1965-1974.
[82] Carpenter, K., & Bahadur, V. (2015). Influence of electric fields and surface chemistry on ice nucleation kinetics. ASME International Mechanical Engineering Congress and Exposition,
[83] Song, X., Zhong, L., & Gao, J. (2021). Direct evidence of ice crystallization inhibition by dielectric relaxation of hydrated ions. Materials, 14(22), 6975.
[84] Bai, H., Chen, Y., Delattre, B., Tomsia, A. P., & Ritchie, R. O. (2015). Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Science advances, 1(11), e1500849.
[85] Wang, C., Chen, X., Wang, B., Huang, M., Wang, B., Jiang, Y., & Ruoff, R. S. (2018). Freeze-casting produces a graphene oxide aerogel with a radial and centrosymmetric structure. ACS nano, 12(6), 5816-5825.
[86] Kränzlin, N., & Niederberger, M. (2015). Controlled fabrication of porous metals from the nanometer to the macroscopic scale. Materials Horizons, 2(4), 359-377.
[87] Besser, B., Tajiri, H. A., Mikolajczyk, G., Möllmer, J., Schumacher, T. C., Odenbach, S., Gläser, R., Kroll, S., & Rezwan, K. (2016). Hierarchical porous zeolite structures for pressure swing adsorption applications. ACS Applied Materials & Interfaces, 8(5), 3277-3286.
[88] Nelson, I., & Naleway, S. E. (2019). Intrinsic and extrinsic control of freeze casting. Journal of Materials Research and Technology, 8(2), 2372-2385.
[89] Akhtar, F., Andersson, L., Ogunwumi, S., Hedin, N., & Bergström, L. (2014). Structuring adsorbents and catalysts by processing of porous powders. Journal of the European Ceramic Society, 34(7), 1643-1666.
[90] Scotti, K. L., & Dunand, D. C. (2018). Freeze casting–A review of processing, microstructure and properties via the open data repository, FreezeCasting. net. Progress in materials science, 94, 243-305.
[91] Yin, T. J., & Naleway, S. E. (2022). Freeze Casting with Bioceramics for Bone Graft Substitutes. Biomedical Materials & Devices, 1-22.
[92] Feng, J., Fu, J., Yao, X., & He, Y. (2022). Triply periodic minimal surface (TPMS) porous structures: From multi-scale design, precise additive manufacturing to multidisciplinary applications. International Journal of Extreme Manufacturing, 4(2), 022001.
[93] Gan, Z., Turner, M. D., & Gu, M. (2016). Biomimetic gyroid nanostructures exceeding their natural origins. Science advances, 2(5), e1600084.
[94] Pan, C., Han, Y., & Lu, J. (2020). Design and optimization of lattice structures: A review. Applied Sciences, 10(18), 6374.
[95] Al-Ketan, O., & Abu Al-Rub, R. K. (2019). Multifunctional mechanical metamaterials based on triply periodic minimal surface lattices. Advanced Engineering Materials, 21(10), 1900524.
[96] Han, S. C., & Kang, K. (2019). Another stretching-dominated micro-architectured material, shellular. Materials Today, 31, 31-38.
[97] Schoen, A. H. (1970). Infinite periodic minimal surfaces without self-intersections.
[98] Karcher, H. (1989). The triply periodic minimal surfaces of Alan Schoen and their constant mean curvature companions. Manuscripta mathematica, 64(3), 291-357.
[99] Mann, S. (2009). Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions. Nature materials, 8(10), 781-792.
[100] Miralbes, R., Ranz, D., Pascual, F., Zouzias, D., & Maza, M. (2022). Characterization of additively manufactured triply periodic minimal surface structures under compressive loading. Mechanics of Advanced Materials and Structures, 29(13), 1841-1855.
[101] Torquato, S., & Donev, A. (2004). Minimal surfaces and multifunctionality. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 460(2047), 1849-1856.
[102] Jung, Y., & Torquato, S. (2005). Fluid permeabilities of triply periodic minimal surfaces. Physical Review E, 72(5), 056319.
[103] Blanco-Montenegro, I., De Ritis, R., & Chiappini, M. (2007). Imaging and modelling the subsurface structure of volcanic calderas with high-resolution aeromagnetic data at Vulcano (Aeolian Islands, Italy). Bulletin of Volcanology, 69, 643-659.
[104] Shah, G. J., Nazir, A., Lin, S.-C., & Jeng, J.-Y. (2022). Design for Additive Manufacturing and Investigation of Surface-Based Lattice Structures for Buckling Properties Using Experimental and Finite Element Methods. Materials, 15(11), 4037.
[105] Lu, Y., Huo, Y., Zou, J. a., Li, Y., Yang, Z., Zhu, H., & Wu, C. (2022). Comparison of the design maps of TPMS based bone scaffolds using a computational modeling framework simultaneously considering various conditions. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 236(8), 1157-1168.
[106] Dolan, J. A., Wilts, B. D., Vignolini, S., Baumberg, J. J., Steiner, U., & Wilkinson, T. D. (2015). Optical properties of gyroid structured materials: from photonic crystals to metamaterials. Advanced Optical Materials, 3(1), 12-32.
[107] Vigild, M. E., Almdal, K., Mortensen, K., Hamley, I., Fairclough, J., & Ryan, A. (1998). Transformations to and from the Gyroid Phase in a Diblock Copolymer. Macromolecules, 31(17), 5702-5716.
[108] Nath, S. D., & Nilufar, S. (2020). An overview of additive manufacturing of polymers and associated composites. Polymers, 12(11), 2719.
[109] Challis, V. J., Xu, X., Zhang, L. C., Roberts, A. P., Grotowski, J. F., & Sercombe, T. B. (2014). High specific strength and stiffness structures produced using selective laser melting. Materials & Design, 63, 783-788.
[110] Naghavi, S. A., Tamaddon, M., Marghoub, A., Wang, K., Babamiri, B. B., Hazeli, K., Xu, W., Lu, X., Sun, C., & Wang, L. (2022). Mechanical characterisation and numerical modelling of TPMS-based gyroid and diamond Ti6Al4V scaffolds for bone implants: an integrated approach for translational consideration. Bioengineering, 9(10), 504.
[111] Winter, B., Butz, B., Dieker, C., Schröder-Turk, G. E., Mecke, K., & Spiecker, E. (2015). Coexistence of both gyroid chiralities in individual butterfly wing scales of Callophrys rubi. Proceedings of the National Academy of Sciences, 112(42), 12911-12916.
[112] Melchels, F. P., Barradas, A. M., Van Blitterswijk, C. A., De Boer, J., Feijen, J., & Grijpma, D. W. (2010). Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing. Acta biomaterialia, 6(11), 4208-4217.
[113] Chen, L.-H., Sun, M.-H., Wang, Z., Yang, W., Xie, Z., & Su, B.-L. (2020). Hierarchically structured zeolites: from design to application. Chemical Reviews, 120(20), 11194-11294.
[114] Yánez, A., Cuadrado, A., Martel, O., Afonso, H., & Monopoli, D. (2018). Gyroid porous titanium structures: A versatile solution to be used as scaffolds in bone defect reconstruction. Materials & Design, 140, 21-29.
[115] Wu, L., Zhang, W., & Zhang, D. (2015). Engineering gyroid‐structured functional materials via templates discovered in nature and in the lab. Small, 11(38), 5004-5022.
[116] Kibsgaard, J., Chen, Z., Reinecke, B. N., & Jaramillo, T. F. (2012). Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nature materials, 11(11), 963-969.
[117] Gorzelak, P., Kołbuk, D., Stolarski, J., Bącal, P., Januszewicz, B., Duda, P., Środek, D., Brachaniec, T., & Salamon, M. A. (2023). A Devonian crinoid with a diamond microlattice. Proceedings of the Royal Society B, 290(1995), 20230092.
[118] Rathore, S. S., Mehta, B., Kumar, P., & Asfer, M. (2023). Flow Characterization in Triply Periodic Minimal Surface (TPMS)-Based Porous Geometries: Part 1—Hydrodynamics. Transport in Porous Media, 146(3), 669-701.
[119] Kadry, S. (2008). Corrosion analysis of stainless steel. Eur. J. Sci. Res, 22(4), 508-516.
[120] Olsson, C.-O., & Landolt, D. (2003). Passive films on stainless steels—chemistry, structure and growth. Electrochimica acta, 48(9), 1093-1104.
[121] Cobb, H. M. (2010). The history of stainless steel. ASM International.
[122] Kim, J. J., & Young, Y. M. (2013). Study on the passive film of type 316 stainless steel. Int. J. Electrochem. Sci, 8(10), 11847-11859.
[123] Abreu, C., Cristóbal, M., Losada, R., Nóvoa, X., Pena, G., & Pérez, M. (2006). The effect of Ni in the electrochemical properties of oxide layers grown on stainless steels. Electrochimica acta, 51(15), 2991-3000.
[124] McGuire, M. F. (2008). Stainless steels for design engineers. Asm International.
[125] Marshall, P. (1984). Austenitic stainless steels: microstructure and mechanical properties.
[126] Reed, R. P. (1989). Nitrogen in austenitic stainless steels. Jom, 41, 16-21.
[127] Wijesinghe, T. S. L., & Blackwood, D. (2006). Characterisation of passive films on 300 series stainless steels. Applied Surface Science, 253(2), 1006-1009.
[128] Cashell, K., & Baddoo, N. (2014). Ferritic stainless steels in structural applications. Thin-Walled Structures, 83, 169-181.
[129] Tardio, S., Abel, M.-L., Carr, R. H., Castle, J. E., & Watts, J. F. (2015). Comparative study of the native oxide on 316L stainless steel by XPS and ToF-SIMS. Journal of Vacuum Science & Technology A, 33(5).
[130] Malik, A., Kutty, P. M., Siddiqi, N. A., Andijani, I. N., & Ahmed, S. (1992). The influence of pH and chloride concentration on the corrosion behaviour of AISI 316L steel in aqueous solutions. Corrosion Science, 33(11), 1809-1827.
[131] Jin, Z., Ge, H., Lin, W., Zong, Y., Liu, S., & Shi, J. (2014). Corrosion behaviour of 316L stainless steel and anti-corrosion materials in a high acidified chloride solution. Applied Surface Science, 322, 47-56.
[132] Wang, Z., Seyeux, A., Zanna, S., Maurice, V., & Marcus, P. (2020). Chloride-induced alterations of the passive film on 316L stainless steel and blocking effect of pre-passivation. Electrochimica acta, 329, 135159.
[133] Cai, B., Liu, Y., Tian, X., Wang, F., Li, H., & Ji, R. (2010). An experimental study of crevice corrosion behaviour of 316L stainless steel in artificial seawater. Corrosion Science, 52(10), 3235-3242.
[134] Chen, Q., & Thouas, G. A. (2015). Metallic implant biomaterials. Materials Science and Engineering: R: Reports, 87, 1-57.
[135] Morsiya, C. (2022). A review on parameters affecting properties of biomaterial SS 316L. Australian Journal of Mechanical Engineering, 20(3), 803-813.
[136] Karimi, S., Nickchi, T., & Alfantazi, A. M. (2012). Long-term corrosion investigation of AISI 316L, Co–28Cr–6Mo, and Ti–6Al–4V alloys in simulated body solutions. Applied Surface Science, 258(16), 6087-6096.
[137] Garcia, C., Ceré, S., & Durán, A. (2004). Bioactive coatings prepared by sol–gel on stainless steel 316L. Journal of non-crystalline solids, 348, 218-224.
[138] Yuan, Q., & Golden, T. D. (2009). Electrochemical study of hydroxyapatite coatings on stainless steel substrates. Thin Solid Films, 518(1), 55-60.
[139] Sridhar, T., Mudali, U. K., & Subbaiyan, M. (2003). Preparation and characterisation of electrophoretically deposited hydroxyapatite coatings on type 316L stainless steel. Corrosion Science, 45(2), 237-252.
[140] Zhang, K., Liu, Y., Wang, B., Yu, F., Yang, Y., Xing, L., Hao, J., Zeng, J., Mao, B., & Shi, W. (2019). Three-dimensional interconnected MoS2 nanosheets on industrial 316L stainless steel mesh as an efficient hydrogen evolution electrode. International Journal of Hydrogen Energy, 44(3), 1555-1564.
[141] Panahi, A., Wei, Z., Song, G., & Levendis, Y. A. (2019). Influence of stainless-steel catalyst substrate type and pretreatment on growing carbon nanotubes from waste postconsumer plastics. Industrial & Engineering Chemistry Research, 58(8), 3009-3023.
[142] Baranidharan, K., Kumaran, S. T., Uthayakumar, M., & Parameswaran, P. (2020). A review of electrochemical corrosion on stainless steel 316. INCAS Bulletin, 12(4), 221-226.
[143] Jun, J., Warrington, G. L., Keiser, J. R., Connatser, R. M., Sulejmanovic, D., Brady, M. P., & Kass, M. D. (2021). Corrosion of Ferrous Structural Alloys in Biomass Derived Fuels and Organic Acids. Energy & Fuels, 35(15), 12175-12186.
[144] Meghnani, D., Gupta, H., Singh, S. K., Srivastava, N., Mishra, R., Tiwari, R. K., Patel, A., Tiwari, A., & Singh, R. K. (2020). Fabrication and electrochemical characterization of lithium metal battery using IL-based polymer electrolyte and Ni-rich NCA cathode. Ionics, 26, 4835-4851.
[145] Prasanth, R., Shubha, N., Hng, H. H., & Srinivasan, M. (2014). Effect of poly (ethylene oxide) on ionic conductivity and electrochemical properties of poly (vinylidenefluoride) based polymer gel electrolytes prepared by electrospinning for lithium ion batteries. Journal of Power Sources, 245, 283-291.
[146] Dabrowski, B., Swieszkowski, W., Godlinski, D., & Kurzydlowski, K. J. (2010). Highly porous titanium scaffolds for orthopaedic applications. Journal of biomedical materials research Part B: Applied biomaterials, 95(1), 53-61.
[147] Fetter, C. W. (2018). Applied hydrogeology. Waveland Press.
[148] Todd, D. K., & Mays, L. W. (2004). Groundwater hydrology. John Wiley & Sons.
[149] Munson, B. R., Young, D. F., Okiishi, T. H., & Huebsch, W. W. (2006). Fundamentals of Fluid Mechanics, John Wiley & Sons. Inc., USA.
[150] Mirzaei, M., & Paydar, M. (2017). A novel process for manufacturing porous 316 L stainless steel with uniform pore distribution. Materials & Design, 121, 442-449.
[151] Ma, S., Tang, Q., Han, X., Feng, Q., Song, J., Setchi, R., Liu, Y., Liu, Y., Goulas, A., & Engstrøm, D. S. (2020). Manufacturability, mechanical properties, mass-transport properties and biocompatibility of triply periodic minimal surface (TPMS) porous scaffolds fabricated by selective laser melting. Materials & Design, 195, 109034.
[152] Lakes, R. (1989). Cellular solids: LJ Gibson and MF Ashby, Pergamon Press, 1988, 357 pp, $95.00 hard cover, $40.00 soft cover. In: Elsevier.
[153] Ashby, M. F., & Medalist, R. M. (1983). The mechanical properties of cellular solids. In: Springer.
[154] Materials, A. (2004). Stainless Steel—Grade 316L—Properties, Fabrication and Applications (UNS S31603). In.
[155] Chino, Y., & Dunand, D. C. (2008). Directionally freeze-cast titanium foam with aligned, elongated pores. Acta materialia, 56(1), 105-113.
[156] Gómez, S., Vlad, M., López, J., & Fernández, E. (2016). Design and properties of 3D scaffolds for bone tissue engineering. Acta biomaterialia, 42, 341-350.
[157] Pennella, F., Cerino, G., Massai, D., Gallo, D., Falvo D’Urso Labate, G., Schiavi, A., Deriu, M., Audenino, A., & Morbiducci, U. (2013). A survey of methods for the evaluation of tissue engineering scaffold permeability. Annals of biomedical engineering, 41, 2027-2041.
[158] Sibiryakov, B., Leite, L., & Sibiriakov, E. (2021). Porosity, specific surface area and permeability in porous media. Journal of Applied Geophysics, 186, 104261.
[159] Chor, M. V., & Li, W. (2006). A permeability measurement system for tissue engineering scaffolds. Measurement Science and Technology, 18(1), 208.
[160] Egan, P. F. (2019). Integrated design approaches for 3D printed tissue scaffolds: Review and outlook. Materials, 12(15), 2355.
[161] Truscello, S., Kerckhofs, G., Van Bael, S., Pyka, G., Schrooten, J., & Van Oosterwyck, H. (2012). Prediction of permeability of regular scaffolds for skeletal tissue engineering: a combined computational and experimental study. Acta biomaterialia, 8(4), 1648-1658.
[162] Li, S., De Wijn, J. R., Li, J., Layrolle, P., & De Groot, K. (2003). Macroporous biphasic calcium phosphate scaffold with high permeability/porosity ratio. Tissue engineering, 9(3), 535-548.
[163] Kohles, S. S., Roberts, J. B., Upton, M. L., Wilson, C. G., Bonassar, L. J., & Schlichting, A. L. (2001). Direct perfusion measurements of cancellous bone anisotropic permeability. Journal of Biomechanics, 34(9), 1197-1202.
[164] Nauman, E. A., Fong, K., & Keaveny, T. (1999). Dependence of intertrabecular permeability on flow direction and anatomic site. Annals of biomedical engineering, 27, 517-524.
[165] Rampersad, S. N. (2012). Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors, 12(9), 12347-12360.
[166] García, A., Cabañas, M. V., Peña, J., & Sánchez-Salcedo, S. (2021). Design of 3d scaffolds for hard tissue engineering: From apatites to silicon mesoporous materials. Pharmaceutics, 13(11), 1981.
[167] Wu, R., Li, Y., Shen, M., Yang, X., Zhang, L., Ke, X., Yang, G., Gao, C., Gou, Z., & Xu, S. (2021). Bone tissue regeneration: the role of finely tuned pore architecture of bioactive scaffolds before clinical translation. Bioactive Materials, 6(5), 1242-1254.