簡易檢索 / 詳目顯示

研究生: 陳奕宏
Chen, Yi-Hong
論文名稱: 高效率小分子有機太陽能電池的結構設計與優化
The Architecture Design and Optimization of Highly Efficient Small Molecule Organic Solar Cells
指導教授: 林皓武
口試委員: 林皓武
汪根欉
吳忠幟
朱治偉
陳美杏
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 188
中文關鍵詞: 有機太陽能電池有機小分子
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文研究不同的有機小分子,在真空蒸鍍製程之太陽能電池的光電特性及元件結構優化。
    首先,第一部份介紹了小分子有機太陽能電池最近的發展現況,接著簡介太陽光頻譜的基本概念、有機太陽能電池的運作機制、元件特性與分析。
    論文的第二部分,介紹一系列非對稱小分子donor材料的光學性質,與以其製作之有機太陽能電池元件的光電特性分析。在第二章至第六章我們分別討論了九種不同的小分子donor材料,並且搭配C70為acceptor材料來製作蒸鍍型小分子有機太陽能電池,其光電轉換效率最低為2.9%,最高為6.8%。 另外我們詳細量測了三種不同材料所組成的電洞傳輸層的光電特性,利用它來作為串聯式結構元件中front cell與back cell的連接層,並且經過謹慎的光學模擬計算與並依照模擬結果來製作串聯式有機太陽能電池,能量轉換效率高達7.3% ~ 7.4%。
    論文的第三部分,我們以薄銀作為有機太陽能電池中的透明陰極導電層來製作透明太陽能電池。在第七章中討論了元件的陰極結構、元件光穿透率與光電流之間的關係,C60-based 的元件效率為2.11%,C70-based 的元件則是呈現極平均的穿透頻譜,並且效率高達3.24%。在第八章中描述了色彩可調變的彩色有機太陽能電池,由於其特殊的微共振腔陰極結構,在主動層材料與結構不變的情況下,元件的穿透光色可任意在整個可見光區域調整,不同色彩元件的能量轉換效率皆能達到~ 5%。


    In this thesis, I focus on the material characterization and the device optimization of small molecule organic solar cells (SMOSCs).
    In the first part, I reviewed recent development of organic solar cells (OSCs), followed by short introduction of solar spectra, device working mechanism, measurement and characterization of OSCs.
    In the second part of the thesis, I studied the characteristics of asymmetrical donor materials for the OSCs. In chapter 2 to chapter 6, optoelectronic characterizations of nine different donor materials have been investigated. OSCs utilizing these materials as donors and C70 as acceptors were fabricated and tested. The photovoltaic devices exhibit high power conversion efficiencies (PCEs) of 2.9% to 6.8%. Remarkably, after the evaluation of optoelectrical properties of three different types of materials as interconnection layers and prudential optical simulation, the fabricated tandem cells adopting two of these ICLs showed the significant PCEs of up to 7.3% ~ 7.4%.
    In the third part of thesis, thin silver layer was employed in SMOSCs as the transparent cathode layers. Chapter 7 describes the relationships between photocurrent, transparency and cathode structures of bifacial solar cells. A C60-based bifacial SMOSC with an efficiency of 2.11%, and a C70-based bifacial SMOSC with balanced transparency and a PCE as high as 3.24% were demonstrated. Chapter 8 describes the colour-tuneable SMOSCs with a microcavity-embedded cathode structures. The transmission spectra of whole devices are tuned between all the visible regions (400 nm – 750 nm) and with the PCEs approaching 5%.

    中文摘要 i Abstract ii Contents iii List of Figures vi List of Tables xvii List of Abbreviations xx Chapter 1. Development of Small Molecule Organic Solar Cells 1 1-1 Introduction 1 1-2 Solar Spectrums 4 1-3 Theory and Working Principles of Organic Solar Cell 5 1-4 Photovoltaic Characteristics 7 1-5 Thesis Organization 9 1-6 Figures 10 Chapter 2. Molecule with Uniaxial Anisotropy for Efficient Vacuum-Deposited Organic Solar Cells 12 2-1 Introduction 12 2-2 Results and Discussion 15 2-3 Conclusions 18 2-4 Figures 19 Chapter 3. A Low-Energy-Gap Donor for High-Performance Small-Molecule Organic Solar Cells 25 3-1 Introduction 25 3-2 Experimental 28 3-3 Results and discussion 30 3-4 Conclusions 34 3-5 Figures 35 Chapter 4. High Efficient Vacuum-Deposited Small-Molecule Organic Solar Cells 45 4-1 Introduction 45 4-2 Experimental 47 4-3 Results and discussion 49 4-4 Conclusions 56 4-5 Figures 57 Chapter 5. Benzochalcogenodiazole-Based Donor–Acceptor–Acceptor Molecular Donors for Organic Solar Cells 81 5-1 Introduction 81 5-2 Experimental 83 5-3 Results and discussion 84 5-4 Conclusions 91 5-5 Figures 93 Chapter 6. Vacuum Deposited Interconnection Layers for Small Molecule Tandem Solar Cells 107 6-1 Introduction 107 6-2 Experimental 109 6-3 Results and discussion 111 6-4 Conclusion 117 6-5 Figures 118 Chapter 7. Highly Efficient Bifacial Transparent Organic Solar Cells 128 7-1 Introduction 128 7-2 Experimental 130 7-3 Results and discussion 131 7-4 Conclusions 136 7-5 Figures 137 Chapter 8. Microcavity-Embedded, Colour-Tuneable Transparent Organic Solar Cells 147 8-1 Introduction 147 8-2 Experimental 149 8-3 Results and discussion 150 8-4 Conclusions 156 8-5 Figures 157 Chapter 9. Summary and Outlooks 169 References 172 Publication List 185

    [1] S. Gunes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 2007, 107, 1324.
    [2] S. B. Darling, F. You, RSC Advances 2013, 3, 17633.
    [3] Z. He, C. Zhong, X. Huang, W. Y. Wong, H. Wu, L. Chen, S. Su, Y. Cao, Adv. Mater. 2011, 23, 4636.
    [4] C. E. Small, S. Chen, J. Subbiah, C. M. Amb, S. W. Tsang, T. H. Lai, J. R. Reynolds, F. So, Nat. Photon. 2011, 6, 115.
    [5] J. S. Moon, J. Jo, A. J. Heeger, Adv. Energy Mater. 2012, 2, 304.
    [6] Z. He, C. Zhong, S. Su, M. Xu, H. Wu, Y. Cao, Nat. Photon. 2012, 6, 591.
    [7] N. Wang, Z. Chen, W. Wei, Z. Jiang, J. Am. Chem. Soc. 2013, 135, 17060.
    [8] S. Liu, K. Zhang, J. Lu, J. Zhang, H. L. Yip, F. Huang, Y. Cao, J. Am. Chem. Soc. 2013, 135, 15326.
    [9] V. Gupta, A. K. Kyaw, D. H. Wang, S. Chand, G. C. Bazan, A. J. Heeger, Sci. Rep. 2013, 3, 1965.
    [10] R. Fitzner, E. Mena-Osteritz, A. Mishra, G. Schulz, E. Reinold, M. Weil, C. Korner, H. Ziehlke, C. Elschner, K. Leo, M. Riede, M. Pfeiffer, C. Uhrich, P. Bauerle, J. Am. Chem. Soc. 2012, 134, 11064.
    [11] Heliatek GmbH press release, Jan 16, 2013; http://www.heliatek.com.
    [12] C. W. Tang, Appl. Phys. Lett. 1986, 48, 183.
    [13] A. Mishra, C. Uhrich, E. Reinold, M. Pfeiffer, P. Bauerle, Adv. Energy Mater. 2011, 1, 265.
    [14] M. Hirade, C. Adachi, Appl. Phys. Lett. 2011, 99, 153302.
    [15] X. Xiao, J. D. Zimmerman, B. E. Lassiter, K. J. Bergemann, S. R. Forrest, Appl. Phys. Lett. 2013, 102, 073302.
    [16] G. D. Wei, S. Y. Wang, K. Sun, M. E. Thompson, S. R. Forrest, Adv. Energy Mater. 2011, 1, 184.
    [17] G. Chen, H. Sasabe, Z. Wang, X. F. Wang, Z. Hong, Y. Yang, J. Kido, Adv. Mater. 2012, 24, 2768.
    [18] N. M. Kronenberg, V. Steinmann, H. Burckstummer, J. Hwang, D. Hertel, F. Wurthner, K. Meerholz, Adv. Mater. 2010, 22, 4193.
    [19] V. Steinmann, N. M. Kronenberg, M. R. Lenze, S. M. Graf, D. Hertel, K. Meerholz, H. Burckstummer, E. V. Tulyakova, F. Wurthner, Adv. Energy Mater. 2011, 1, 888.
    [20] J. Zhou, Y. Zuo, X. Wan, G. Long, Q. Zhang, W. Ni, Y. Liu, Z. Li, G. He, C. Li, B. Kan, M. Li, Y. Chen, J. Am. Chem. Soc. 2013, 135, 8484.
    [21] A. K. Kyaw, D. H. Wang, V. Gupta, J. Zhang, S. Chand, G. C. Bazan, A. J. Heeger, Adv. Mater. 2013, 25, 2397.
    [22] A. K. Kyaw, D. H. Wang, V. Gupta, W. L. Leong, L. Ke, G. C. Bazan, A. J. Heeger, ACS Nano 2013, 7, 4569.
    [23] B. Walker, C. Kim, T.-Q. Nguyen, Chem. Mater. 2011, 23, 470.
    [24] J. Drechsel, B. Männig, F. Kozlowski, M. Pfeiffer, K. Leo, H. Hoppe, Appl. Phys. Lett. 2005, 86, 244102.
    [25] Z. J. Ning, H. Tian, Chem. Commun. 2009, 5483.
    [26] W. Y. Wong, C. L. Ho, J. Mater. Chem. 2009, 19, 4457.
    [27] W. Y. Wong, C. L. Ho, Coord. Chem. Rev. 2009, 253, 1709.
    [28] S. Roquet, A. Cravino, P. Leriche, O. Aleveque, P. Frere, J. Roncali, J. Am. Chem. Soc. 2006, 128, 3459.
    [29] A. Cravino, P. Leriche, O. Alévêque, S. Roquet, J. Roncali, Adv. Mater. 2006, 18, 3033.
    [30] H. Kageyama, H. Ohishi, M. Tanaka, Y. Ohmori, Y. Shirota, Adv. Funct. Mater. 2009, 19, 3948.
    [31] Y. Shirota, J. Mater. Chem. 2000, 10, 1.
    [32] K. Schulze, C. Uhrich, R. Schüppel, K. Leo, M. Pfeiffer, E. Brier, E. Reinold, P. Bäuerle, Adv. Mater. 2006, 18, 2872.
    [33] S. Steinberger, A. Mishra, E. Reinold, C. M. Muller, C. Uhrich, M. Pfeiffer, P. Bauerle, Org. Lett. 2011, 13, 90.
    [34] S. Steinberger, A. Mishra, E. Reinold, J. Levichkov, C. Uhrich, M. Pfeiffer, P. Bauerle, Chem. Commun. 2011, 47, 1982.
    [35] W. Y. Wong, X. Z. Wang, Z. He, A. B. Djurisic, C. T. Yip, K. Y. Cheung, H. Wang, C. S. K. Mak, W. K. Chan, Nat. Mater. 2007, 6, 521.
    [36] Q. Wang, W. Y. Wong, Polymer Chemistry 2011, 2, 432.
    [37] W. Y. Wong, C. L. Ho, Acc. Chem. Res. 2010, 43, 1246.
    [38] J. Ohshita, M. Nodono, H. Kai, T. Watanabe, A. Kunai, K. Komaguchi, M. Shiotani, A. Adachi, K. Okita, Y. Harima, K. Yamashita, M. Ishikawa, Organometallics 1999, 18, 1453.
    [39] J. Hou, H. Y. Chen, S. Zhang, G. Li, Y. Yang, J. Am. Chem. Soc. 2008, 130, 16144.
    [40] H. Y. Chen, J. Hou, A. E. Hayden, H. Yang, K. N. Houk, Y. Yang, Adv. Mater. 2010, 22, 371.
    [41] H. W. Lin, C. L. Lin, H. H. Chang, Y. T. Lin, C. C. Wu, Y. M. Chen, R. T. Chen, Y. Y. Chien, K. T. Wong, J. Appl. Phys. 2004, 95, 881.
    [42] D. Yokoyama, A. Sakaguchi, M. Suzuki, C. Adachi, Org. Electron. 2009, 10, 127.
    [43] D. Yokoyama, Y. Setoguchi, A. Sakaguchi, M. Suzuki, C. Adachi, Adv. Funct. Mater. 2010, 20, 386.
    [44] Y. J. Cheng, S. H. Yang, C. S. Hsu, Chem. Rev. 2009, 109, 5868.
    [45] Y. Liang, L. Yu, Acc. Chem. Res. 2010, 43, 1227.
    [46] B. Walker, A. B. Tomayo, X. D. Dang, P. Zalar, J. H. Seo, A. Garcia, M. Tantiwiwat, T. Q. Nguyen, Adv. Funct. Mater. 2009, 19, 3063.
    [47] H. Shang, H. Fan, Y. Liu, W. Hu, Y. Li, X. Zhan, Adv. Mater. 2011, 23, 1554.
    [48] R. Fitzner, E. Reinold, A. Mishra, E. Mena-Osteritz, H. Ziehlke, C. Korner, K. Leo, M. Riede, M. Weil, O. Tsaryova, A. Weiss, C. Uhrich, M. Pfeiffer, P. Bauerle, Adv. Funct. Mater. 2011, 21, 897.
    [49] D. Wynands, M. Levichkova, K. Leo, C. Uhrich, G. Schwartz, D. Hildebrandt, M. Pfeiffer, M. Riede, Appl. Phys. Lett. 2010, 97, 073503.
    [50] S. Y. Wang, E. I. Mayo, M. D. Perez, L. Griffe, G. D. Wei, P. I. Djurovich, S. R. Forrest, M. E. Thompson, Appl. Phys. Lett. 2009, 94.
    [51] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science 1995, 270, 1789.
    [52] B. C. Thompson, J. M. J. Fréchet, Angew. Chem. Int. Ed. 2008, 47, 58.
    [53] S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, A. J. Heeger, Nat. Photon. 2009, 3, 297.
    [54] R. C. Coffin, J. Peet, J. Rogers, G. C. Bazan, Nat Chem 2009, 1, 657.
    [55] J. Huo, L. Wang, E. Irran, H. Yu, J. Gao, D. Fan, B. Li, J. Wang, W. Ding, A. M. Amin, C. Li, L. Ma, Angew. Chem. Int. Ed. 2010, 49, 9237.
    [56] F. Huang, K.-S. Chen, H.-L. Yip, S. K. Hau, O. Acton, Y. Zhang, J. Luo, A. K. Y. Jen, J. Am. Chem. Soc. 2009, 131, 13886.
    [57] P. E. Schwenn, K. Gui, A. M. Nardes, K. B. Krueger, K. H. Lee, K. Mutkins, H. Rubinstein-Dunlop, P. E. Shaw, N. Kopidakis, P. L. Burn, P. Meredith, Adv. Energy Mater. 2011, 1, 73.
    [58] K. Mutkins, K. Gui, M. Aljada, P. E. Schwenn, E. B. Namdas, P. L. Burn, P. Meredith, Appl. Phys. Lett. 2011, 98, 153301.
    [59] L. Y. Lin, C. H. Tsai, K. T. Wong, T. W. Huang, C. C. Wu, S. H. Chou, F. Lin, S. H. Chen, A. I. Tsai, J. Mater. Chem. 2011, 21, 5950.
    [60] A. M. C. Ng, K. Y. Cheung, M. K. Fung, A. B. Djurišić, W. K. Chan, Thin Solid Films 2008, 517, 1047.
    [61] B. D. Aleksandra, F. Torsten, L. Karl, J. Opt. A: Pure Appl. Opt. 2000, 2, 458.
    [62] J. Xue, B. P. Rand, S. Uchida, S. R. Forrest, Adv. Mater. 2005, 17, 66.
    [63] H. W. Lin, L. Y. Lin, Y. H. Chen, C. W. Chen, Y. T. Lin, S. W. Chiu, K. T. Wong, Chem. Commun. 2011, 47, 7872.
    [64] Y. M. Sun, C. J. Takacs, S. R. Cowan, J. H. Seo, X. Gong, A. Roy, A. J. Heeger, Adv. Mater. 2011, 23, 2226.
    [65] L. A. A. Pettersson, L. S. Roman, O. Inganas, J. Appl. Phys. 1999, 86, 487.
    [66] L. Y. Lin, C. H. Tsai, F. Lin, T. W. Huang, S. H. Chou, C. C. Wu, K. T. Wong, Tetrahedron 2012, 68, 7509.
    [67] L. Y. Lin, Y. H. Chen, Z. Y. Huang, H. W. Lin, S. H. Chou, F. Lin, C. W. Chen, Y. H. Liu, K. T. Wong, J. Am. Chem. Soc. 2011, 133, 15822.
    [68] V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Adv. Funct. Mater. 2006, 16, 2016.
    [69] H. J. Snaith, Energy Environ. Sci. 2012, 5, 6513.
    [70] M. Tammer, A. P. Monkman, Adv. Mater. 2002, 14, 210.
    [71] H. W. Lin, C. L. Lin, C. C. Wu, T. C. Chao, K. T. Wong, Org. Electron. 2007, 8, 189.
    [72] N. M. Kronenberg, M. Deppisch, F. Wurthner, H. W. Lademann, K. Deing, K. Meerholz, Chem. Commun. 2008, 6489.
    [73] H. Bürckstümmer, N. M. Kronenberg, M. Gsänger, M. Stolte, K. Meerholz, F. Würthner, J. Mater. Chem. 2010, 20, 240.
    [74] F. Würthner, K. Meerholz, Chem. Eur. J. 2010, 16, 9366.
    [75] H. Burckstummer, E. V. Tulyakova, M. Deppisch, M. R. Lenze, N. M. Kronenberg, M. Gsanger, M. Stolte, K. Meerholz, F. Wurthner, Angew. Chem. Int. Ed. 2011, 50, 11628.
    [76] C. L. Pai, C. L. Liu, W. C. Chen, S. A. Jenekhe, Polymer 2006, 47, 699.
    [77] J. Casado, T. M. Pappenfus, L. L. Miller, K. R. Mann, E. Ortí, P. M. Viruela, R. Pou-Amérigo, V. Hernández, J. T. López Navarrete, J. Am. Chem. Soc. 2003, 125, 2524.
    [78] M. Hiramoto, H. Fujiwara, M. Yokoyama, Appl. Phys. Lett. 1991, 58, 1062.
    [79] S. W. Chiu, L. Y. Lin, H. W. Lin, Y. H. Chen, Z. Y. Huang, Y. T. Lin, F. Lin, Y. H. Liu, K. T. Wong, Chem. Commun. 2012, 48, 1857.
    [80] L. Y. Lin, C. W. Lu, W. C. Huang, Y. H. Chen, H. W. Lin, K. T. Wong, Org. Lett. 2011, 13, 4962.
    [81] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat. Mater. 2005, 4, 864.
    [82] L. Q. Yang, T. Zhang, H. X. Zhou, S. C. Price, B. J. Wiley, W. You, ACS Appl. Mater. Interfaces 2011, 3, 4075.
    [83] M. S. Kim, B. G. Kim, J. Kim, ACS Appl. Mater. Interfaces 2009, 1, 1264.
    [84] L. J. A. Koster, V. D. Mihailetchi, P. W. M. Blom, Appl. Phys. Lett. 2006, 88, 052104.
    [85] B. A. Collins, E. Gann, L. Guignard, X. He, C. R. McNeill, H. Ade, The Journal of Physical Chemistry Letters 2010, 1, 3160.
    [86] W. Chen, T. Xu, F. He, W. Wang, C. Wang, J. Strzalka, Y. Liu, J. Wen, D. J. Miller, J. Chen, K. Hong, L. Yu, S. B. Darling, Nano Lett. 2011, 11, 3707.
    [87] Y. H. Chen, L. Y. Lin, C. W. Lu, F. Lin, Z. Y. Huang, H. W. Lin, P. H. Wang, Y. H. Liu, K. T. Wong, J. Wen, D. J. Miller, S. B. Darling, J. Am. Chem. Soc. 2012, 134, 13616.
    [88] B. J. A. Caputo, G. C. Welch, D. A. Kamkar, Z. B. Henson, T.-Q. Nguyen, G. C. Bazan, Small 2011, 7, 1422.
    [89] J.-M. Jiang, P.-A. Yang, H.-C. Chen, K.-H. Wei, Chem. Commun. 2011, 47, 8877.
    [90] B. Liu, X. Chen, Y. He, Y. Li, X. Xu, L. Xiao, L. Li, Y. Zou, J. Mater. Chem. A 2013, 1, 570.
    [91] R. Yang, R. Tian, Q. Hou, W. Yang, Y. Cao, Macromolecules 2003, 36, 7453.
    [92] M. Velusamy, K. R. Justin Thomas, J. T. Lin, Y.-C. Hsu, K.-C. Ho, Org. Lett. 2005, 7, 1899.
    [93] J. Hou, M.-H. Park, S. Zhang, Y. Yao, L.-M. Chen, J.-H. Li, Y. Yang, Macromolecules 2008, 41, 6012.
    [94] G. L. Gibson, T. M. McCormick, D. S. Seferos, J. Am. Chem. Soc. 2011, 134, 539.
    [95] A. Ojala, H. Burckstummer, M. Stolte, R. Sens, H. Reichelt, P. Erk, J. Hwang, D. Hertel, K. Meerholz, F. Wurthner, Adv. Mater. 2011, 23, 5398.
    [96] A. Ojala, H. Burckstummer, J. Hwang, K. Graf, B. von Vacano, K. Meerholz, P. Erk, F. Wurthner, J. Mater. Chem. 2012, 22, 4473.
    [97] P. M. Beaujuge, C. M. Amb, J. R. Reynolds, Acc. Chem. Res. 2010, 43, 1396.
    [98] H. W. Lin, Y. H. Chen, Z. Y. Huang, C. W. Chen, L. Y. Lin, F. Lin, K. T. Wong, Org. Electron. 2012, 13, 1722.
    [99] H. W. Lin, H. W. Kang, Z. Y. Huang, C. W. Chen, Y. H. Chen, L. Y. Lin, F. Lin, K. T. Wong, Org. Electron. 2012, 13, 1925.
    [100] J. Meiss, N. Allinger, M. K. Riede, K. Leo, Appl. Phys. Lett. 2008, 93, 103311.
    [101] M. Zhang, H. Wang, H. Tian, Y. Geng, C. W. Tang, Adv. Mater. 2011, 23, 4960.
    [102] A. Ojala, A. Petersen, A. Fuchs, R. Lovrincic, C. Polking, J. Trollmann, J. Hwang, C. Lennartz, H. Reichelt, H. W. Hoffken, A. Pucci, P. Erk, T. Kirchartz, F. Wurthner, Adv. Funct. Mater. 2012, 22, 86.
    [103] G. A. H. Wetzelaer, M. Kuik, M. Lenes, P. W. M. Blom, Appl. Phys. Lett. 2011, 99, 153506.
    [104] W. L. Leong, S. R. Cowan, A. J. Heeger, Adv. Energy Mater. 2011, 1, 517.
    [105] Y. Zhang, X. D. Dang, C. Kim, T. Q. Nguyen, Adv. Energy Mater. 2011, 1, 610.
    [106] T. Ameri, G. Dennler, C. Lungenschmied, C. J. Brabec, Energy Environ. Sci. 2009, 2, 347.
    [107] G. Dennler, M. C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, C. J. Brabec, Adv. Mater. 2008, 20, 579.
    [108] J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C. C. Chen, J. Gao, G. Li, Y. Yang, Nat Commun 2013, 4, 1446.
    [109] P. Santra, P. Kamat, J. Am. Chem. Soc. 2013, 135, 877.
    [110] W. Li, A. Furlan, K. H. Hendriks, M. M. Wienk, R. A. Janssen, J. Am. Chem. Soc. 2013, 135, 5529.
    [111] J. You, C. C. Chen, L. Dou, S. Murase, H. S. Duan, S. A. Hawks, T. Xu, H. J. Son, L. Yu, G. Li, Y. Yang, Adv. Mater. 2012, 24, 5267.
    [112] L. T. Dou, J. B. You, J. Yang, C. C. Chen, Y. J. He, S. Murase, T. Moriarty, K. Emery, G. Li, Y. Yang, Nat. Photon. 2012, 6, 180.
    [113] L. Dou, J. Gao, E. Richard, J. You, C. C. Chen, K. C. Cha, Y. He, G. Li, Y. Yang, J. Am. Chem. Soc. 2012, 134, 10071.
    [114] Y. Zou, Z. Deng, W. J. Potscavage, M. Hirade, Y. Zheng, C. Adachi, Appl. Phys. Lett. 2012, 100, 243302.
    [115] M. Zhang, H. Wang, C. W. Tang, Org. Electron. 2012, 13, 249.
    [116] M. Riede, C. Uhrich, J. Widmer, R. Timmreck, D. Wynands, G. Schwartz, W. M. Gnehr, D. Hildebrandt, A. Weiss, J. Hwang, S. Sundarraj, P. Erk, M. Pfeiffer, K. Leo, Adv. Funct. Mater. 2011, 21, 3019.
    [117] H. S. Shim, S. Y. Kim, J. W. Kim, T. M. Kim, C. H. Lee, J. J. Kim, Appl. Phys. Lett. 2013, 102, 203903.
    [118] D. Y. Kim, G. Sarasqueta, F. So, Sol. Energy Mater. Sol. Cells 2009, 93, 1452.
    [119] X. Xiao, G. Wei, S. Wang, J. D. Zimmerman, C. K. Renshaw, M. E. Thompson, S. R. Forrest, Adv. Mater. 2012, 24, 1956.
    [120] G. D. Wei, X. Xiao, S. Y. Wang, K. Sun, K. J. Bergemann, M. E. Thompson, S. R. Forrest, ACS Nano 2012, 6, 972.
    [121] H. Kanno, R. J. Holmes, Y. Sun, S. Kena-Cohen, S. R. Forrest, Adv. Mater. 2006, 18, 339.
    [122] C. W. Chen, Y. J. Lu, C. C. Wu, E. H. E. Wu, C. W. Chu, Y. Yang, Appl. Phys. Lett. 2005, 87, 241121.
    [123] G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzich, J. Salbeck, Appl. Phys. Lett. 2004, 85, 3911.
    [124] J. Huang, M. Pfeiffer, A. Werner, J. Blochwitz, K. Leo, S. Liu, Appl. Phys. Lett. 2002, 80, 139.
    [125] M. Pfeiffer, K. Leo, X. Zhou, J. S. Huang, M. Hofmann, A. Werner, J. Blochwitz-Nimoth, Org. Electron. 2003, 4, 89.
    [126] K. S. Yook, S. O. Jeon, J. Y. Lee, Thin Solid Films 2009, 517, 6109.
    [127] Y. Y. Chang, J. Y. Hung, Y. Chi, J. P. Chyn, M. W. Chung, C. L. Lin, P. T. Chou, G. H. Lee, C. H. Chang, W. C. Lin, Inorg. Chem. 2011, 50, 5075.
    [128] C. H. Chang, M. C. Kuo, W. C. Lin, Y. T. Chen, K. T. Wong, S. H. Chou, E. Mondal, R. C. Kwong, S. Xia, T. Nakagawa, C. Adachi, J. Mater. Chem. 2012, 22, 3832.
    [129] C. H. Chang, Y. S. Ding, P. W. Hsieh, C. P. Chang, W. C. Lin, H. H. Chang, Thin Solid Films 2011, 519, 7992.
    [130] C. H. Lin, Y. Y. Chang, J. Y. Hung, C. Y. Lin, Y. Chi, M. W. Chung, C. L. Lin, P. T. Chou, G. H. Lee, C. H. Chang, W. C. Lin, Angew. Chem. Int. Ed. Engl. 2011, 50, 3182.
    [131] J. Endo, T. Matsumoto, J. Kido, Jpn. J. Appl. Phys. 2002, 41, L358.
    [132] W. J. Shin, J. Y. Lee, J. C. Kim, T. H. Yoon, T. S. Kim, O. K. Song, Org. Electron. 2008, 9, 333.
    [133] J. Qiu, Z. B. Wang, M. G. Helander, Z. H. Lu, Appl. Phys. Lett. 2011, 99, 153305.
    [134] J. H. Yu, W. S. Jeon, J. S. Park, R. Pode, J. H. Kwon, Jpn. J. Appl. Phys. 2010, 49, 102102.
    [135] Y. Fan, H. Zhang, J. Chen, D. Ma, Org. Electron. 2013, 14, 1898.
    [136] S. Schubert, J. Meiss, L. Müller-Meskamp, K. Leo, Adv. Energy Mater. 2013, 3, 438.
    [137] C. Sachse, L. Muller-Meskamp, L. Bormann, Y. H. Kim, F. Lehnert, A. Philipp, B. Beyer, K. Leo, Org. Electron. 2013, 14, 143.
    [138] S. Schubert, M. Hermenau, J. Meiss, L. Muller-Meskamp, K. Leo, Adv. Funct. Mater. 2012, 22, 4993.
    [139] M. Hermenau, S. Schubert, H. Klumbies, J. Fahlteich, L. Muller-Meskamp, K. Leo, M. Riede, Sol. Energy Mater. Sol. Cells 2012, 97, 102.
    [140] L. Muller-Meskamp, Y. H. Kim, T. Roch, S. Hofmann, R. Scholz, S. Eckardt, K. Leo, A. F. Lasagni, Adv. Mater. 2012, 24, 906.
    [141] C. T. Lin, C. H. Yeh, M. H. Chen, S. H. Hsu, C. I. Wu, T. W. Pi, J. Appl. Phys. 2010, 107, 053703.
    [142] B. E. Lassiter, J. D. Zimmerman, A. Panda, X. Xiao, S. R. Forrest, Appl. Phys. Lett. 2012, 101, 063303.
    [143] D. Cheyns, B. P. Rand, P. Heremans, Appl. Phys. Lett. 2010, 97, 033301.
    [144] A. Henemann, Renewable Energy Focus 2008, 9, 14.
    [145] R. Koeppe, D. Hoeglinger, P. A. Troshin, R. N. Lyubovskaya, V. F. Razumov, N. S. Sariciftci, ChemSusChem 2009, 2, 309.
    [146] X. Wang, G. M. Ng, J. W. Ho, H. L. Tam, F. R. Zhu, IEEE J. Sel. Top. Quantum Electron. 2010, 16, 1685.
    [147] R. F. Bailey-Salzman, B. P. Rand, S. R. Forrest, Appl. Phys. Lett. 2006, 88, 233502.
    [148] J. E. Lewis, E. Lafalce, P. Toglia, X. M. Jiang, Sol. Energy Mater. Sol. Cells 2011, 95, 2816.
    [149] Y. Galagan, M. G. Debije, P. W. M. Blom, Appl. Phys. Lett. 2011, 98, 043302.
    [150] T. Winkler, H. Schmidt, H. Flugge, F. Nikolayzik, I. Baumann, S. Schmale, T. Weimann, P. Hinze, H. H. Johannes, T. Rabe, S. Hamwi, T. Riedl, W. Kowalsky, Org. Electron. 2011, 12, 1612.
    [151] J. Meiss, T. Menke, K. Leo, C. Uhrich, W.-M. Gnehr, S. Sonntag, M. Pfeiffer, M. Riede, Appl. Phys. Lett. 2011, 99, 043301.
    [152] R. R. Lunt, V. Bulovic, Appl. Phys. Lett. 2011, 98, 113305.
    [153] H. W. Lin, S. W. Chiu, L. Y. Lin, Z. Y. Hung, Y. H. Chen, F. Lin, K. T. Wong, Adv. Mater. 2012, 24, 2269.
    [154] M. S. Su, C. Y. Kuo, M. C. Yuan, U. S. Jeng, C. J. Su, K. H. Wei, Adv. Mater. 2011, 23, 3315.
    [155] Y. Sun, C. Cui, H. Wang, Y. Li, Adv. Energy Mater. 2011, 1, 1058.
    [156] R. S. Sennett, G. D. Scott, J. Opt. Soc. Am. 1950, 40, 203.
    [157] N. P. Sergeant, A. Hadipour, B. Niesen, D. Cheyns, P. Heremans, P. Peumans, B. P. Rand, Adv. Mater. 2012, 24, 728.
    [158] H. Jin, C. Tao, M. Velusamy, M. Aljada, Y. Zhang, M. Hambsch, P. L. Burn, P. Meredith, Adv. Mater. 2012, 24, 2572.
    [159] L. T. Dou, W. H. Chang, J. Gao, C. C. Chen, J. B. You, Y. Yang, Adv. Mater. 2013, 25, 825.
    [160] K. S. Chen, J. F. Salinas, H. L. Yip, L. J. Huo, J. H. Hou, A. K. Y. Jen, Energy Environ. Sci. 2012, 5, 9551.
    [161] A. Colsmann, A. Puetz, A. Bauer, J. Hanisch, E. Ahlswede, U. Lemmer, Adv. Energy Mater. 2011, 1, 599.
    [162] B. Norton, P. C. Eames, T. K. Mallick, M. J. Huang, S. J. McCormack, J. D. Mondol, Y. G. Yohanis, Sol Energy 2011, 85, 1629.
    [163] J. Meiss, F. Holzmueller, R. Gresser, K. Leo, M. Riede, Appl. Phys. Lett. 2011, 99, 193307.
    [164] D. Kumaresan, R. P. Thummel, T. Bura, G. Ulrich, R. Ziessel, Chem. Eur. J. 2009, 15, 6335.
    [165] J. T. Cox, G. Hass, R. F. Rowntree, Vacuum 1954, 4, 445.
    [166] R. B. Muchmore, J. Opt. Soc. Am. 1948, 38, 20.
    [167] J. Meiss, K. Leo, M. K. Riede, C. Uhrich, W.-M. Gnehr, S. Sonntag, M. Pfeiffer, Appl. Phys. Lett. 2009, 95, 213306.
    [168] N. C. Giebink, G. P. Wiederrecht, M. R. Wasielewski, Nat. Photon. 2011, 5, 694.
    [169] M. Thomschke, S. Hofmann, S. Olthof, M. Anderson, H. Kleemann, M. Schober, B. r. Lüssem, K. Leo, Appl. Phys. Lett. 2011, 98, 083304.
    [170] P. Freitag, S. Reineke, S. Olthof, M. Furno, B. Lüssem, K. Leo, Org. Electron. 2010, 11, 1676.
    [171] D. S. Leem, H. D. Park, J. W. Kang, J. H. Lee, J. W. Kim, J. J. Kim, Appl. Phys. Lett. 2007, 91, 011113.
    [172] S. K. Kim, H. S. Ee, W. Choi, S. H. Kwon, J. H. Kang, Y. H. Kim, H. Kwon, H. G. Park, Appl. Phys. Lett. 2011, 98, 011109.
    [173] D. Wynands, M. Levichkova, M. Riede, M. Pfeiffer, P. Baeuerle, R. Rentenberger, P. Denner, K. Leo, J. Appl. Phys. 2010, 107, 014517.
    [174] W. Tress, K. Leo, M. Riede, Sol. Energy Mater. Sol. Cells 2011, 95, 2981.
    [175] Z. Tang, Z. George, Z. Ma, J. Bergqvist, K. Tvingstedt, K. Vandewal, E. Wang, L. M. Andersson, M. R. Andersson, F. Zhang, O. Inganäs, Adv. Energy Mater. 2012, 2, 1467.
    [176] C. C. Chen, L. Dou, J. Gao, W. H. Chang, G. Li, Y. Yang, Energy Environ. Sci. 2013, 6, 2714.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE