研究生: |
賴羿均 Lai, Yi-Chun |
---|---|
論文名稱: |
破傷風桿菌之質子傳送焦磷酸水解酶中基要酪胺酸之功能探討 Characterization of essential tyrosine residues of H+-translocating pyrophosphatases from Clostridium tetani |
指導教授: |
潘榮隆
Pan, Rong-Long |
口試委員: |
曾繁根
Tseng, Fan-Gang 張文綺 Chang, Wen-Chi |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 33 |
中文關鍵詞: | 破傷風桿菌 、焦磷酸水解酶 、質子 、酪胺酸 、點突變 |
外文關鍵詞: | Clostridium, tetani |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
嵌膜性質子傳送焦磷酸水解酶能夠水解焦磷酸,並且利用其水解能量產生跨膜電化學質子梯度。許多研究指出,酪胺酸在各種酵素中扮演數種功能性的角色,包括作為轉譯後調控的磷酸化修飾位、排序信號跨膜蛋白的目標、以及直接參與催化反應。為了瞭解質子傳送焦磷酸水解酶中酪胺酸所扮演的角色,破傷風桿菌質子傳送焦磷酸水解酶中的所有酪胺酸,藉由定點突變技術置換為丙胺酸,並且檢驗其突變後酵素之功能性特性。我們發現其中四個突變株(Y226A, Y392A, Y414A and Y471A突變株)無法正常表現。另外有一株正常表現之突變株Y175,失去其水解焦磷酸之活性。我們進一步針對這五株突變株進行其他種胺基酸的置換。所有酪胺酸置換為苯丙氨酸或是色胺酸的突變株,都能與去半胱氨酸突變株有一樣好的蛋白質表現。另外在這些突變株中,Y414S和Y414T突變株顯現出相較其他突變株高出許多之水解焦磷酸之活性,代表其側鏈上的羥基對於其酵素活性十分重要。更深入的分析離子效應,可發現Y414S和Y414T株突變株擁有不同敏感度的鉀離子以及鈉離子抑制特性。基於這些定點突變結果以及預測之三維結構,我們推測酪胺酸414與白胺酸441形成之氫鍵對於維持鉀離子結合區域的結構十分必要。總結以上結果,此研究發現質子傳送焦磷酸水解酶中的酪胺酸,具有許多未能預期之功能
Membrane-integral proton-translocating pyrophosphatase (H+-PPase; EC3.6.1.1) hydrolyzes pyrophosphate (PPi) and uses the energy to create the electrochemical proton gradient cross the membrane. Many studies indicated that tyrosine plays several functional roles in variety of enzymes, such as the phosphorylation site of post-translational regulation, the sorting signal of transmembrane proteins targeting, and direct involvement in enzymatic activity. To determine the critical functional roles of tyrosines in H+-PPase, all tyrosine residues from Clostridium tetani E88 H+-PPase were substituted with alanine by site-directed mutagenesis in Cys-less template and their functional properties examined. We found that 4 variants (Y226A, Y392A, Y414A and Y471A mutants) could not be expressed properly. Another mutant with normal expression, Y175A mutant, displayed deterioration in PPi hydrolysis activity. Moreover, we substituted these five tyrosines to other kinds of amino acids. All variants of Tyr → Phe or Tyr → Trp could be expressed as well as Cys-less mutant. Among these mutants, Y414S and Y414T exhibited a higher PPi hydrolysis activities compared to other substitutions, suggesting that the hydroxyl group is essential for the enzymatic activity. Furthermore, Y414S and Y414T mutants showed the distinct sensitivity of K+-stimulation and Na+-inhibition from Cys-less background. Based on the mutagenesis results and predicted structure, we speculate that Tyr-414 formed a hydrogen bond with Leu-441, which is essential for maintaining the structure of K+-binding site. Taken together, several unexpected functions of tyrosine residues in H+-PPase were revealed in this study.
1. Maeshima, M. (2000) Vacuolar H+-pyrophosphatase. Biochim. Biophys. Acta 1465, 37-51
2. Rea, P. A. and Poole, R. J. (1993) Vacuolar H+-translocating pyrophosphatase. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 157-180
3. Serrano, A., Perez-Castineira, J. R., Baltscheffsky, H. & Baltscheffsky, M. (2004) Proton-pumping inorganic pyrophosphatases in some archaea and other extremophilic prokaryotes. J. Bioenerg. Biomembr. 36, 127–133
4. Maeshima, M. (2001) Tonoplast transporters: organization and function. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 469–497
5. Belogurov, G. A. and Lahti, R. (2002) A lysine substitute for K+. A460K mutation eliminates K+ dependence in H+-pyrophosphatase of Carboxydothermus hydrogenoformans. J. Biol. Chem. 277, 49651–49654
6. Drozdowicz, Y. M. and Rea, P. A. (2001) Vacuolar H+- pyrophosphatases: from the evolutionary backwaters into the mainstream. Trends Plant Sci. 6, 206–211
7. Baltscheffsky, M., Schultz, A. and Baltscheffsky, H. (1999) H+-pumping inorganic pyrophosphatase: a tightly membrane-bound family. FEBS Lett. 452, 121-127
8. Lin, S. M., Tsai, J, Y., Hsiao, C. D., Huang, Y. T., Chiu, C. L., Liu, M. H., Tung, J. Y., Liu, T. H., Pan, R. L. and Sun, Y. J. (2012) Crystal structure of a membrane-embedded H+-translocating pyrophosphatase. Nature 484, 399-403
9. Kellosalo, J., Kajander, T., Kogan, K., Pokharel, K. and Goldman, A. (2012) The structure and catalytic cycle of a sodium pumping pyrophosphatase. Science 337, 473–476
10. Kajander, T., Kellosalo, J., and Goldman, A. (2013) Inorganic pyrophosphatases: One substrate, three mechanisms. FEBS Lett. (In press)
11. Nakanishi, Y., Saijo, T., Wada, Y. and Maeshima, M. (2001) Mutagenic analysis of functional residues in putative substrate-binding site and acidic domains of vacuolar H+-pyrophosphatase. J. Biol. Chem. 276, 7654–7660
12. Rea, P. A., Kim, Y., Sarafian, V., Poole, R. J., Davies, J. M., Sanders D. (1992) Vacuolar H+-translocating pyrophosphatases: a new category of ion translocase. Trends Biochem. Sci. 17, 348–353
13. Maeshima, M. (1991) H+-translocating inorganic pyrophosphatase of plant vacuoles. Inhibition by Ca2+, stabilization by Mg2+ and immunological comparison with other inorganic pyrophosphatases. Eur. J. Biochem. 196, 11-17
14. Gordon-Weeks, R., Steele, S. H., and Leigh, R. A. (1996) The Role of magnesium, pyrophosphate, and their complexes as substrates and activators of the vacuolar H+-pumping inorganic pyrophosphatase (studies using ligand protection from covalent inhibitors). Plant Physiol. 111,195-202
15. Bonifacino, J. S. and Traub, L. M. (2003) Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu. Rev. Biochem. 72, 395-447
16. Braulke, T. and Bonifacino, J. S. (2009) Sorting of lysosomal proteins. Biochim. Biophys. Acta 1793, 605–614
17. Ishikita, H. (2011) Tyrosine deprotonation and sssociated hydrogen bond rearrangements in a photosynthetic reaction center. PLoS One. e26808
18. Barry, B. A. (2011) Proton coupled electron transfer and redox active tyrosines in Photosystem II. J. Photochem. Photobiol. B. 104, 60-71
19. Huang, Y. T., Liu, T. H., Chen, Y. W., Lee, C. H., Chen, H. H., Huang, T. W., Hsu, S. H., Lin, S. M., Pan, Y. J., Lee, C. H., Hsu, I. C., Tseng, F. G., Fu, C. C. and Pan, R. L. (2010) Distance variations between active sites of H+-pyrophosphatase determined by single molecule fluorescence resonance energy transfer. J. Biol. Chem. 285, 23655-23664
20. Kirsch, R. D. and Joly, E. (1998) An improved PCR-mutagenesis strategy for two-site mutagenesis or sequence swapping between related genes. Nucleic Acids Res. 26, 1848-1850
21. Hsiao, Y. Y., Van, R. C., Hung, S. H., Lin, H. H., and Pan, R. L. (2004) Roles of histidine residues in plant vacuolar H+-pyrophosphatase. Biochim. Biophys. Acta 1608, 190–199
22. Mimura, H., Nakanishi, Y., Hirono, M., and Maeshima, M. (2004) Membrane topology of the H+-pyrophosphatase of Streptomyces coelicolor determined by cysteine-scanning mutagenesis. J. Biol. Chem. 279, 35106-35112
23. Lee, C. H., Pan, Y. J., Huang, Y. T., Liu, T. H., Hsu, S. H., Lee, C. H., Chen, Y. W., Lin, S. M., Huang, L. K., and Pan, R. L. (2011) Identif ication of essential lysines involved in substrate binding of vacuolar H+-pyrophosphatase. J. Biol. Chem. 286, 11970-11976
24. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 27, 680-685
25. Pan, Y. J., Lee, C. H., Hsu, S. H., Huang, Y. T., Lee, C. H., Liu, T. H., Chen, Y. W., Lin, S. M. and Pan, R. L. (2010) The transmembrane domain 6 of vacuolar H+-pyrophosphatase mediates protein targeting and proton transport. Biochim Biophys Acta 1807, 59-67
26. Bonifacino, J. S. and Dell'Angelica, E. C. (1999) Molecular bases for the recognition of tyrosine-based sorting signals. J Cell Biol. 145, 923-926
27. Nagy, J. K. and Sanders, C. R. (2004) Destabilizing mutations promote membrane protein misfolding. Biochemistry 43, 19-25
28. Dobson, C. M. (2003) Protein folding and misfolding. Nature 426, 884-890