研究生: |
潘柏宇 Pan, Bo-Yu. |
---|---|
論文名稱: |
ㄧ些中心構形與中心測度的個案研究 Some Case Studies of Central Configurations and Central Measures |
指導教授: |
陳國璋
Chen, Kuo-Chang |
口試委員: |
鄭志豪
TEH, JYH-HAUR 蔡孟傑 CHUAH, MENG-KIAT 蔡亞倫 TSAI, YA-LUN 黃信元 Huang, Hsin-Yuan |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 78 |
中文關鍵詞: | 中心構形 、中心測度 、5體中心構形 |
外文關鍵詞: | (6,1)-stacked central configurations, 5-body concave central configurations, central measures |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
第一章,我們簡介我們的工作.
第二章,我們介紹ㄧ些中心構形的結果與說明我們為何考慮中心構形.
第三章,我們考慮兩個問題,第一個問題,在2001年Alain Chenciner提出一個問題:等質量正n邊形是不是唯一解,當我們考慮共圓n體中心構形限制其質心落在圓心時? 我們證明n=5的情形,在ㄧ些限制下. 第二個問題,我們考慮特別的(6,1)堆疊中心構形,我們證明滿足這種條件的中心構形只有唯一解.
第四章,對於凹5體中心構形,我們得到ㄧ些 S_ij之間的關系.
第五章,我們建構中心測度,將中心構形推廣到連續質量的情形.
Abstract
In chapter 1, we introduce our work in the thesis.
In chapter 2, we introduce some results of central configuration and the importance of central configuration.
In chapter 3, we consider two problems.
First, In 2001, Alain Chenciner asked a problem: Is the regular n-gon with equal masses the unique central configuration lying on a common circle with center of mass being located at the center of the circumscribed circle? We poeve the case of n=5 with some constrains.
Second, We now consider a special planar (6,1)-stacked central configuration problem: Five bodies consist a non-collinear 5-body central configuration with some constraints. We prove there only one type of the special planar (6,1)-stacked central configuration.
In chapter 4, we get some S_ij's relation of concave planar five-body central configurations.
In chapter 5, we create a theory of central measures for celestial mechanics. This theory generalizes central configurations to include continuum mass distributions.
[1] Albouy, A., Sym’etrie des configurations centrales de quatre corps. C. R. Acad. Sci. Paris 320, s’erie 1. (1995), 217–220.
[2] Albouy, A., The symmetric central configurations of four equal masses. Contemp. Math. 198 (1996), 131–135.
[3] Albouy, A., On a paper of Moeckel on central configurations. Regul. Chaotic Dyn. 8 (2003), 133–142.
[4] Albouy, A., Fu, Y., Sun, S., Symmetry of planar four-body convex central configurations. Proc. R. Soc. A.
464(2093) (2008), 1355–1365.
[5] Albouy, A.,; Kaloshin, V., Finiteness of central configurations for five bodies in the plane. Ann. Math. 176
(2012), 535–588.
[6] Albouy, A., Cabral, H.E., Santos, A.A., Some problems on the classical n-body problem. Celest. Mech.
Dyn. Astron. 113 (2012), 369–375.
[7] Bartky, W., MacMillan, W. D., Permanent configurations in the problem of four bodies. Trans. Amer.
Math. Soc. 34 (1932), 838–875.
[8] Bannikova, E. Yu.; Vakulik, V. G.; Shulga, V. M., Gravitational potential of a homogeneous circular
torus: a new approach. Mon. Not. R. Astron. Soc. 411 (2011), 557–564.
[9] Chazy, J., Sur certaines trajectoires du probl`eme des n corps. Bull. Astron. 35 (1918), 321–389.
[10] Chen, K. C., Hsu, Ku-Jung., Pan, Bo-Yu., A Theory of Central Measures for Celestial Mechanics. SIAM J. Appl. Dyn. Syst. 16(1) (2017), 204–225.
[11] Chen, K. C., Hsiao, J. S., Strictly convex central configurations of the planar five-body problem. Trans. Amer. Math. Soc. (2017).
[12] Chenciner, A., Are there perverse choreographies ? HAMSYS (2001).
[13] Corbera, M.; Llibre, J., Central configurations of nested regular polyhedra for the spatial 2n-body problem.
J. Geom. Phys. 58 (2008), 1241–1252.
[14] Dziobek, O., Ueber einen merkwrdigen Fall des Vielkrperproblems. Astron. Nachr. 152 (1900), 32–46.
[15] Euler, L. , De motu rectilineo trium corporum se mutuo attrahentium. Novi Comm. Acad. Sci. Imp. Petrop.
11 (1767), 144–151.
[16] Fayc ̧al, N., On the classification of pyramidal central configurations. Proc. Am. Math. Soc. 124 (1996),
249–258.
[17] Fernandes, A.C., Mello, L.F. , On stacked planar central configurations with five bodies when one body
is removed. Qual. Theory Dyn. Syst. 12 (2013), 293–303.
[18] Gauss, C. F., Determinatio attractionis quam in punctum quodvis positionis datae exerceret planeta, si
eius massa per totem orbital, rations temporis, quo singulae partes describuntur, uniformiter esset dispertita.
Werke. Band III. Go ̈ttingen (1818), 331–355.
[19] Hagihara, Y., Celestial mechanics. MIT Press, Cambridge, Massachusetts, 1970.
[20] Hampton, M., Co-circular central configurations in the four-body problem. Equadiff 2003 International Con-
ference on Differential Equations, 993–998, World Sci. Publ. Co. Pte. Ltd. (2005).
[21] Hampton, M., Stacked central configurations: new examples in the planar five-body problem. Nonlinearity.
18(5) (2005), 2299–2304.
[22] Hampton, M.; Moeckel, R., Finiteness of relative equilibria of the four-body problem. Invent. Math. 163
(2006), 289–312.
[23] Hewitt, E.; Stromberg, K., Real and Abstract Analysis, Graduate Texts in Mathematics v. 25, Springer-
Verlag, 1975.
[24] Kellogg, O. D., Foundations of potential theory. Die Grundlehren der Mathematischen Wissenschaften, Band
31, Springer-Verlag, Berlin-New York, 1967.
[25] Kondrat’ev, B. P., Dubrovskii, A. S., Trubitsyna, N. G., Mukhametshina, E ́. Sh., Laplace series
expansion of the potential of a homogeneous circular torus. Technical Physics, 54 (2009), 176–181.
[26] Kotsireas, I., Lazard, D., Central configurations of the 5-body problem with equal masses in three-
dimensional space. J. Math. Sci. 108 (2002), 1119–1138. 77
78 BIBLIOGRAPHY
[27] Lagrange, J. L., Note sur un paradoxe qu’on rencontre dans les formules de l’attraction d’un point vers une surface sphrique quelconque. Œuevres, Tome Septi ́eme (1759), 591–594.
[28] Lagrange, J. L., Essai sur le problme des trois corps. OEuvres. Vol. 6 (1772).
[29] Lee, T.L., Santoprete, M., Central configurations of the five-body problem with equal masses. Celest. Mech.
Dyn. Astron. 104 (2009), 369–381.
[30] Lindstrom, P. W., Limiting mass distributions of minimal potential central configurations. In “Hamiltonian
Dynamics and Celestial Mechanics”, Contemporary Math. 198, Amer. Math. Soc., Providence, Rhode Island,
109–129, 1996.
[31] Lindstrom, P. W., On the distribution of mass in collinear central configurations. Trans. Amer. Math. Soc.
350 (1998), 2487–2523.
[32] Long, Y. ; Sun, S., Four-body central configurations with some equal masses. Arch. Ration. Mech. Anal. 162
(2002), 25–44.
[33] Longley, W. R., Some particular solutions in the problem of n bodies. Bull. Amer. Math. Soc. 13 (1907),
324–335.
[34] Maxwell, J. C., Stability of the motion of Saturn’s rings (1890). In Niven, W. D. (ed.), The scientific papers
of James Clerk Maxwell, Cambridge University Press, Cambridge.
[35] Moeckel, R., On central configurations. Math Z. 205 (1990), 499–517.
[36] Moeckel, R., Linear stability of relative equilibria with a dominant mass. J. Dynam. & Diff. Equations 6
(1994), 37–51.
[37] Moeckel, R., Lectures on central configurations. http://www.math.umn.edu/~rmoeckel/notes/Notes.html.
[38] Moulton, F. R., The straight line solutions of the problem of n bodies. Ann. Math. 12 (1910), 1–17.
[39] Meyer, K. R.; Hall, G. R., Introduction to Hamiltonian Dynamical Systems and the n-body Problem,
Springer Science and Business Media, (2009).
[40] Shi, J., Xie, Z., Classification of four-body central configurations with three equal masses. J. Math. Anal.
Appl. 363 (2010), 512–524.
[41] Smale, S., Topology and Mechanics. II. The Planar n-Body Problem. Inv. Math. 11 (1970).
[42] Smale, S., Mathematical problems for the next century. Math. Intell. 20 (1998) 7–15.
[43] Tsai, Y. L., Private communication. (2017).
[44] Uspensky, J. V., Theory of Equations. McGraw-Hill. (1948), p256.
[45] Williams, W.L., Permanent configurations in the problem of five bodies., Trans. Am. Math. Soc. 44 (1938),
563–579
[46] Wintner, A., The Analytical Foundations of Celestial Mechanics, Princeton Math. Series 5, Princeton Uni-
versity Press, (1941).
[47] Xia, Z., Convex central configurations for the n-body problem. J. Diff. Eqns. 200 (2004), 185–190.
[48] Zhang, S.; Zhou, Q., Double pyramidal central configurations. Phys. Lett. A. 281 (2001), 240–248.