簡易檢索 / 詳目顯示

研究生: 吳嘉達
Jia-Da Wu
論文名稱: 具平行流道之新型平板熱管之效能測試
Performance Test of a Novel Flat Heat Pipe with Parallel Channels
指導教授: 王訓忠
Shwin-Chung Wong
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 61
中文關鍵詞: 平板熱管平行流道
外文關鍵詞: flat heat pipe, parallel channels
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱管技術發展至今,應用在電子設備冷卻上其效能是無庸置疑,然而在一些產品的測試上顯示,製程的簡易度與產品良率是成敗的關鍵。為此本研究提供一種平板熱管的設計,利用銅搭配水作為工作流體,並且以流道取代上板部分的毛細結構,因此在密封時毛細結構的連續性不會因此中斷,而且更強化工作流體的循環,有效提升熱管的熱傳極限,此外不需要額外的支撐物可減少加工程序,構造簡單可以使製作上較為簡便,以期有效提高製作上的良率。
    毛細結構使用網目式毛細結構,根據毛細及銅板燒結與否區分為三種類型。第一類及第二類區別在於毛細的燒結與否,金屬容器本身並不經過燒結的過程,而第三類則是將毛細連同金屬銅板一併燒結,並比較此三類型熱管之性能表現。
    針對此設計之平板熱管作一系列效能測試,利用加熱面積20*20mm的加熱塊模擬CPU發熱情形,使用風扇搭配鰭片,在83*69mm的冷凝面積下進行散熱,平板熱管的表面溫度誤差小於3℃,而最大熱傳量超過400瓦。散熱效能以第三類毛細結構最佳,平板熱管熱阻為0.08-0.03℃/W,□加熱量增加而減低。將毛細連同金屬銅板一併燒結可使低加熱量時的平板熱管熱阻獲得明顯改善,高加熱量時第二類與第三類毛細結構的效能差異不大。此結果證實本研究所設計的平板熱管在性能上有優異的表現。


    摘要 目錄 圖表目錄 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 平板熱管之優點與性能關鍵 2 1.2.2 蒸發/沸騰特性 3 1.2.3 各種形式之平板熱管 7 1.3 研究動機及目的 10 第二章 基本理論 19 2.1 平板熱管的工作原理 19 2.1.1 密閉容器 19 2.1.2 毛細結構 19 2.1.3 工作流體 20 2.2 平板熱管之操作極限 20 2.3 熱阻分析模式 21 2.3.1 接觸熱阻 21 2.3.2 平板熱管熱阻 22 2.3.3 熱沉熱阻 24 第三章 實驗方法 27 3.1 簡介 27 3.2 實驗配置與步驟 27 3.2.1 平板熱管部分 27 3.2.2 實驗設備 30 3.2.3 其他相關儀器 32 3.2.4 實驗步驟 33 3.2.5 熱阻計算之整理 34 3.3 實驗參數 35 第四章 實驗結果與討論 41 4.1 第一類毛細結構之平板熱管效能 42 4.1.1 充填量與熱管效能之關係 42 4.1.2 粗糙度對熱管效能之影響 43 4.2 第二類與第三類毛細結構之平板熱管效能 45 4.2.1 第二類毛細結構-燒結銅網/粗糙表面 45 4.2.2 第三類毛細結構-銅網與銅板一併燒結/光滑表面 46 4.3 平板熱管效能與3mm厚銅板之效能比較 47 4.3.1 平板熱管各部份熱阻 47 4.3.2 平板熱管與3mm厚銅板之均溫性比較 48 4.3.3 平板熱管與3mm厚銅板之總熱阻比較 48 第五章 結論 56 References 58

    References

    [1] Garner, S.D., “Heat sink capabilities and limitations: a hierarchical evaluations of leading thermal technologies,” HT2005-72088, Proceeding of HT2005, 2005 ASME Summer Heat Transfer Conference, San Francisco, California, USA, July 17-22, 2005.
    [2] Webb, R.L., ”Next generation devices for electronics cooling,” MECE2003-42179, Proceedings of IMECE’03, 2003 ASME International Mechanical Engineering Congress, Washington, D.C., November 15–21, 2003.
    [3] Mochizuki, M., Saito, Y., Kiyooka, F., and Nguyen, T., “The way we were and are going on cooling high power processors in the industries,” The Seventh International Symposium in Transport Phenomena, Toyama, Japan, September 4-8, 2006.
    [4] Boukhanouf, R., Haddad, A., North, M.T., and Buffone, C., “Experimental investigation of a flat plate heat pipe performance using IR thermal imaging,” Applied Thermal Engineering, 26 (2006) 2148–2156
    [5] Chang, J-Y., Unnikrishnan, V., Ravi, P., and Suzana, P., “Thermal performance of vapor chambers under hot spot heating conditions,” Proceedings of IPACK2005 ASME InterPACK’, San Francisco, California, USA, July 17-22, 2005.
    [6] Xu, G., Bruce, G., and Marlin, V., “Extension of air cooling for high power processors,” Inter Society Conference on Thermal Phenomena, 2004.
    [7] Kurihari, H.M. and Myers, J.E., “Effects of superheat and roughness on the boiling coefficients,” AICHE J., 6 (1960) 83-91.
    [8] Chaudri, I.H., and McDougall, I.R., “Aging studies in nucleate pool boiling of isopropyl acetate and perchlorethylene,” Int. J. Heat Mass Transfer, 12 (1969) 681-688.
    [9] 江沅晉, “微結構蒸氣腔體之研究與電子散熱應用,” 國立台灣大學機械工程學研究所博士論文, 2005.
    [10] Wang, Y., and Vafai, K., “An experimental investigation of thermal performance of an asymmetrical flat plate heat pipe,” Int. J. Heat Mass Transfer, 43 (2000) 2657-2668.
    [11] Wang, Y. and Peterson, G.P., “Investigation of a novel flat heat pipe,” ASME Journal of Heat Transfer, 127 (2005) 165-170.
    [12] Peterson, G.P., Wang, Y., and Li, C. “Evaporation boiling in thin capillary wicks – wick thickness effects,”ASME Journal of Heat Transfer, 128 (2006) 1315-1319.
    [13] Peterson, G.P., and Li, C. “Evaporation boiling in thin capillary wicks –effects of volumetric porosity and mesh size
    ”ASME Journal of Heat Transfer, 128 (2006) 1320-1328.
    [14] Hanlon, M.A., and Ma, H.B., “Evaporation heat transfer in sintered porous media,” ASME Journal of Heat Transfer, 125 (2003) 644-652.
    [15] Koichiro, T., Yuichi, F, and Shunta, U., “Fundamental investigation of roll bond heat pipe as heat spreader plate for notebook computers,” IEEE Transactions on Components and Packaging Technologies, 23 (2000) 80-85.
    [16] Hiroaki, A., Fumitoshi, K., Masataka, M., Koichi, M., Yuji, S., Youji, K., Thang, N., and Tien, N., “Advance thermal solution using vapor chamber technology for cooling high performance desktop cpu in notebook computer,” The 1st International Symposium on Micro & Nano Technology, Honolulu, Haiwaii, USA, March 4-17, 2004.
    [17] Jeung, S.G., “Quantitative thermal performance evaluation of a cost-effective vapor chamber heat sink containing a metal-etched microwick structure for advanced microprocessor cooling,” Sensors and Actuators A 121 (2005) 549–556.
    [18] Hideaki, I., and Yasushi, K., “The advanced cooling technology of microprocessor units using a vapor chamber,” Proceedings of Tamkang University 2005, International Nano and MEMS Workshop, Tamsui, Taipei, Taiwan. November 23-24, 2005
    [19] Cao, Y., and Gao, M., “Wickless network heat pipes for high heat flux spreading applications,” Int. J. Heat Mass Transfer, 45 (2002) 2539–2547.
    [20] Kevin, G., “CFD modeling of a Therma-Base heat sink,” Thermacore, Inc.
    [21] Lee, S.H.-K., Chu, S.K., Choi, C.C.C. and Jaluria, Y., “Performance characteristics of vapor chambers with boiling enhanced multi-wick structures,” 23rd IEEE SEMI-THERM Symposium, 2007.
    [22] Lee, S., “Calculation spreading resistance in heat sink,” Electronics Cooling, vol.4, pp,30-33, January, 1998.
    [23] Faghri, A., “Heat Pipe Science and Technology,” Taylor and Francis, 1995.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE