簡易檢索 / 詳目顯示

研究生: 趙光平
Chao, Kuang-Ping
論文名稱: 具砷化銦鎵覆蓋層之可調波長量子點紅外線光偵測器
Wavelength-Tunable Quantum-dot Infrared Photodetectors with InGaAs Capping Layers
指導教授: 吳孟奇
Wu, Meng-Chyi
林時彥
Lin, Shih-Yen
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 69
中文關鍵詞: 紅外線偵測器量子點
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們利用分子束磊晶機台分別成長十層標準砷化銦/砷化鎵量子點紅外線光偵測器及含有砷化銦鎵層覆蓋的砷化銦/砷化鎵量子點紅外線光偵測器。對於含有添加砷化銦鎵覆蓋層的量子點紅外線偵測影響在本實驗被討論。藉由增加砷化銦鎵中的銦成分,並無法把偵測波長延伸到長波段。這個現象顯示出若要得到更長的偵測波段長,必須減少能帶中能階的能量差。因此藉由減小量子點的尺寸,能夠得到長波段的偵測波長被提出及驗證出來。除此之外,我們發現在不同操作偏壓下有史塔克偏移效應。此現象我們認為是由於在量子點結構中不對稱的能帶結構所造成的。另一方面,增加砷化銦鎵的厚度來達成超長偵測波長的實驗被我們證實了。藉由增加砷化銦鎵的厚度,降低了砷化銦鎵量子井的基態的位置。因此,簡易的砷化銦鎵覆蓋層結構並不會造成應力的累積,此高性能的量子點紅外線光偵測器被實現了。此優點有助於多偵測波段型的量子點紅外線光偵測器陣列元件的製作。


    Figure caption Figure 1 Process procedure for QDIP devices 15 Figure 2 measurement system 19 Figure 3 Setup and alignment of device on cryostat 19 Figure 4 The normalized 10 K PL spectra of sample A-C 28 Figure 5 The normalized 10 K spectral responses of device A biased at 1.2V and device B biased at 2.6V 29 Figure 6 The 10 K PLE spectrum of sample B 30 Figure 7 The normalized 10K spectral responses of devices B and C biased at 2.6 V 31 Figure 8 The photocurrent ratios of devices A and C biased at -1.0 and -1.4 V under different incident-light polarizations 32 VI Figure 9 The AFM images of 2.5 and 2.0 ML InAs QDs 43 Figure 10 The 10 K spectral response of device D at 2.0 V 44 Figure 11 The 10 K PLE spectrum measured at the PL peak energy 1.151 eV of the device D. A schematic band diagram of the device is also shown in the insert 45 Figure 12 The 10 K spectral responses of the device D at -2.0V 46 Figure 13 The normalized 10 K spectral responses of the device E at +1.6 V 47 Figure 14 The normalized 10 K spectral responses of the device with 4 nm In0.15Ga0.85As capping layer +1.6 V 48 Figure 15 The normalized 10 K spectral responses of device F and device G at 2.0 V 59 VII Figure 16 The 10 K spectral responses of device G at 0.6, 1.0 and 1.4 V, respectively 60 Figure 17 The 10 K PLE spectrum of sample G with its PL peak energy 1.054 eV as detection wavelength 61 Figure 18 The 10 K spectral response of device H at 2.0 V 62 Figure 19 The 10 K PLE spectrum of sample H with its PL peak energy 1.151 eV as the detection wavelength 63 Figure 20 The 10 K spectral response of device I at 2.0 V 64 Figure 21 The 10 K PLE spectrum of sample I with its PL peak energy 1.114 eV as the detection wavelength 65 VIII IX Table caption Table 1 Wafer clean procedure 8 Table 2 Coating procedure of photo-resist (Step 1) 8 Table 3 Coating procedure of photo-resist (Step 2-1) 9 Table 4 Coating procedure of photo-resist (Step 2-2) 10 Table 5 Sample structure A, B and C 27 Table 6 Sample structure D, and E 42 Table 7 Sample structure F, G, H, and I 58

    [1] E. Theocharous, N. P. Fox, and T. R. Prior, Proc. SPIE. 56, 2815 (1996).
    [2] P. E. Petersen, Auger recombination in mercury cadmium telluride Semiconductors and Semimetals, R. K. Willardson and A. C. Beer (New York: Academic). 18, 121–55, chapter 4 1981
    [3] C. J. Chen, K. K. Choi, L. Rokhinson, W. H. Chang, and D. C. Tsui, Appl. Phys. Lett. 75, 3210 (1999).
    [4] T. R. Schimert, S. L. Barnes, A. J. Brouns, F. C. Case, P. Mitra, and
    L. T. Claiborne, Appl. Phys. Lett. 68, 2846 (1996).
    [5] S. Y. Lin, Y. R. Tsai, and S. C. Lee, Appl. Phys. Lett. 78, 2784 (2001).
    [6] S. Chakrabarti, A. D. Stiff-Roberts, P. Bhattacharya, S. Gunapala, S. Bandara, S. B. Rafol, and S. W. Kennerly, IEEE Photonics Technol. Lett. 16, 1361 (2004).
    [7] F. Tang, S. Y. Lin, and S. C. Lee, Appl. Phys. Lett. 78, 2428 (2001).
    [8] F. Tang, C. D. Chiang, P. K. Weng, Y. T. Gau, J. J. Ruo, S. T. Yang, C.
    C. Shih, S. Y. Lin, and S. C. Lee, IEEE Photonics Technol. Lett. 18, 986
    (2006)
    [9] T. E. Vandervelde, M.C. Lenz, E. Varley, A. Barve, J. Shao, R. V. Shenoi, D. A. Ramirez, W. Jang, Y. D. Sharma, S. Krishna, IEEE Journal of Selected Topics in Quantum Electronics. 14,1150 (2008).
    [10] S. Y. Lin, Y. R. Tsai, and S. C. Lee, Appl. Phys. Lett. 78, 2784 (2001).
    [11] S. Chakrabarti, A. D. Stiff-Roberts, P. Bhattacharya, S. Gunapala, S. Bandara, S. B. Rafol, and S. W. Kennerly, IEEE Photonics Technol. Lett. 16, 1361 (2004).
    [12] S. F. Tang, S. Y. Lin, and S. C. Lee, Appl. Phys. Lett. 78, 2428 (2001).
    [13] S. T. Chou, M. C. Wu, S. Y. Lin, and J. Y. Chi, Appl. Phys. Lett. 88,
    173511 (2006).
    [14] S. F. Tang, C. D. Chiang, P. K. Weng, Y. T. Gau, J. J. Ruo, S. T. Yang, C.C. Shih, S. Y. Lin, and S. C. Lee, IEEE Photonics Technol. Lett. 18, 986 (2006).
    [15] D. Gunapala, S. V. Bandara, C. J. Hill, D. Z. Ting, J. K. Liu, S. B.
    Rafol, E. R. Blazejewski, J. M. Mumolo, S. A. Keo, S. Krishna, Y. C.
    Chang, and C. A. Shott, Proc. SPIE 6206, 62060J (2006).
    [16] S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo,A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, Appl. Phys. Lett. 86, 193501 (2005).
    [17] G. Ariyawansa, A. G. Unil Perera, G. S. Raghavan, G. von Winckel, A.
    Stintz, and S. Krishna, IEEE Photonics Technol. Lett. 17, 1064 (2005).
    [18] L. Höglund, P. O. Holtz, H. Pettersson, C. Asplund, Q. Wang, H. Malm, S.Almqvist, E. Petrini, and J. Y. Andersson, Appl. Phys. Lett. 93, 203512(2008).
    [19] S. Raghavan, D. Forman, P. Hill, N. R. Weisse-Bernstein, G. von Winckel,P. Rotella, S. Krishna, S. W. Kennerly, and J. W. Little, J. Appl. Phys. 96, 1036 (2004).
    [20] K. Nishi, H. Saito, S. Sugou, and J. S. Lee, Appl. Phys. Lett. 74, 1111
    (1999).
    [21] C. C. Tseng, S. T. Chou, S. Y. Lin, C. N. Chen, W. H. Lin, Y. H. Chen, T.H. Chung, and M. C. Wu, J. Vac. Sci. Technol. B 26, 1831 (2008).
    [22] S. Y. Lin, Y. R. Tsai, and S. C. Lee, Appl. Phys. Lett. 78, 2784 (2001).
    [23] S. Chakrabarti, A. D. Stiff-Roberts, P. Bhattacharya, S. Gunapala, S. Bandara, S. B. Rafol, and S. W. Kennerly, IEEE Photonics Technol. Lett. 16, 1361 (2004).
    [24] S. F. Tang, S. Y. Lin, and S. C. Lee, Appl. Phys. Lett. 78, 2428 (2001).
    [25] S. T. Chou, M. C. Wu, S. Y. Lin, and J. Y. Chi, Appl. Phys. Lett. 88,
    173511 (2006).
    [26] S. F. Tang, C. D. Chiang, P. K. Weng, Y. T. Gau, J. J. Ruo, S. T. Yang, C.C. Shih, S. Y. Lin, and S. C. Lee, IEEE Photonics Technol. Lett. 18, 986 (2006)
    [27] D. Gunapala, S. V. Bandara, C. J. Hill, D. Z. Ting, J. K. Liu, S. B.
    Rafol, E. R. Blazejewski, J. M. Mumolo, S. A. Keo, S. Krishna, Y. C.
    Chang, and C. A. Shott, Proc. SPIE 6206, 62060J (2006).
    [28] S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo,A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, Appl. Phys. Lett. 86, 193501 (2005).
    [29] G. Ariyawansa, A. G. Unil Perera, G. S. Raghavan, G. von Winckel, A.
    Stintz, and S. Krishna, IEEE Photonics Technol. Lett. 17, 1064 (2005).
    [30] L. Höglund, P. O. Holtz, H. Pettersson, C. Asplund, Q. Wang, H. Malm, S.Almqvist, E. Petrini, and J. Y. Andersson, Appl. Phys. Lett. 93, 203512(2008).
    [31] S. Raghavan, D. Forman, P. Hill, N. R. Weisse-Bernstein, G. von Winckel,P. Rotella, S. Krishna, S. W. Kennerly, and J. W. Little, J. Appl. Phys. 96, 1036 (2004).
    [32] Y. J. Mii, P. G. Karunasiri, K. L.Wang, M. Chen, and P. F. Yuh, Appl. Phys. Lett. 56, 1986 (1990).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE