簡易檢索 / 詳目顯示

研究生: 黃靖雅
Ching-Ya Huang
論文名稱: 以一步合成法製備含鈀奈米金屬之中孔洞二氧化矽及其鑑定
Preparation and Characterization of Pd-containing Mesoporous SiO2 by One-pot Synthesis
指導教授: 趙桂蓉
Kuei-Jung Chao
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 89
中文關鍵詞: 中孔洞二氧化矽一步合成共合成
外文關鍵詞: mesoporous, MCM-41, Pd, palladium, one-pot synthesis, co-synthesis
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • This thesis includes the review on the recent progress of mesoporous silicas and metal-containing mesoporous materials as well as the report on preparation and characterization of highly dispersed palladium nanoparticles containing mesoporous silicas MCM-41 and MCM-48 which were prepared through one-pot synthesis. The complex-surfactant aggregates [CTA]2[PdBr4] were considered to be generated in the presence of a large amount of CTAB. The synthesis of MCM-41 mesophase templated by CTA+ surfactant and the generation of PdO species through the reaction between [PdBr4]2□ and hydroxide anion may occur simultaneously. Those PdO nanoparticles were reduced to Pd metal by hydrogen treatment and found to stay inside the mesochannels of MCM-41 as detected by TEM, XAS, and PXRD. In hydrothermal synthesis of Pd/MCM-48, Pd nanoparticles of average size 7 nm were found to be deposited on the MCM-48, probably derived from ethanol reduction of Pd (II) complex. Moreover, the template removal from MCM-41 was observed to be catalyzed by Pd(0) nanoparticles.


    Contents Chapter 1 Introduction 1 1.1 Mesoporous Silica Materials 1 1.1.1 Definition 1 1.1.2 Formation mechanism 2 1.2 Metal in Mesoporous Silicas 8 1.2.1 Post-synthesis 8 1.2.2 Co-synthesis 12 1.3 Template removal from mesoporous silica 17 1.4 The purpose of this study 23 1.5 References 25 Chapter 2 Experiment 29 2.2 Synthesis 30 2.2.1 MCM-41 30 2.2.2 Pd/MCM-41 30 2.2.3 MCM-48 33 2.2.4 Pd/MCM-48 34 2.2.5 Pd(BC) 35 2.3 Characterization 36 2.3.1 Inductive-coupling plasma-atomic emission spectroscopy analysis (ICP-AES) 36 2.3.2 Transmission electron microscopy analysis (TEM) 36 2.3.3 Fourier Transform Infrared Spectroscopy measurement (FT-IR) 37 2.3.4 X-ray diffraction measurement 38 2.3.5 Nitrogen adsorption/desorption measurement 39 2.3.6 X-ray absorption spectroscopy (XAS) measurement 40 2.3.7 Temperature programmed reduction (TPR) analysis 41 2.3.8 Thermal gravimetric analysis (TGA) 42 2.4 References 43 Chapter 3 Results and Discussion 44 3.1 The meso-structured phases of MCM-41 44 3.1.1 The structure of MCM-41 mesophase 44 3.1.2 The pore properties of MCM-41 phase 47 3.2 The mesostructured phase of MCM-48 50 3.3 The Pd species in Pd/MCM-41 and Pd/MCM-48 52 3.3.1 As-synthesized Pd/MCM-41 and Pd/MCM-48 52 3.3.2 Reduced Pd/MCM-41s 57 3.3.2.1 XRD analysis 57 3.3.2.2 TPR analysis 59 3.3.2.3 In-situ XAS 61 3.3.3 TEM 64 3.4 The formation mechanism of Pd(0) and PdO in Pd/MCM-41 and Pd/MCM-48 68 3.4.1 Pd/MCM-41 68 3.4.2 Pd/MCM-48 71 3.5 The template removal from Pd/MCM-41 73 3.5.1 TGA analysis of MCM-41as and Pd/MCM-41as 73 3.5.2 TGA of H2 pretreated Pd/MCM-41 and MCM-41 75 3.5.3 FT-IR study on MCM-41s and Pd/MCM-41s 79 3.6 References 82 Chapter 4 Conclusion 84 Chapter 5 Appendixes 85 Appendix I 85 Appendix II 87 Appendix III 89

    1. J. S. Brandley, “Clusters anf Colloids”, G. Schmid, Weinheim (1994)
    2. U. Ciesla, F. Schuth, Micropor. Mesopor, Mater. 1999, 27, 131.
    3. C.T. Kresge, M. E. Leonowiez, W. J. Roth, J. C. Vartuli, J.S. Beck, Nature, 1992, 359, 710.
    4. J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D.Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. Mccullen, J.B.Higgius, J.L. Schlenker, J. Am. Chem. Soc. 1992, 114, 10834.
    5. S. Inagaki, Y. Fukushima, K. Kuroda, J. Chem. Soc., Chem. Commun. 1993, 680.
    6. N. K. Raman, M. T. Anderson, C. J. Brinker, Chem. Mater. 1996, 8, 1682.
    7. X. S. Zhao, Q. G. Lu, G. J. Millar, Ind. Eng. Chem. Res., 1996, 35, 2075.
    8. C. J. Brinker, Y. Lu, A. Selling, H. Fan, Adv. Mater. 1999, 11, 579
    9. Q. Huo, D. I. Margolese, U. Ciesla, P. Feng, T. E. Gier, P. Sieger, R. Leon, P. M. Petroff, F. Schüth, G. D Stucky, Nature, 1994, 368, 317.
    10. Q. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier, P. Sieger, A. Firouzi, B. F. Chmelka, F. Schüth, G. D. Stucky, Chem. Mater,. 1994, 6, 1176.
    11. U. Ciesla, D. Demuth, R. Leon, P. Petroff, G. D. Stucky, K. Unger, F. Schüth, J. Chem. Soc., Chem. Commun., 1994, 1387.
    12. P. T. Tanev, T. J. Pinnavaia, Science 1995, 267, 865.
    13. D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, G. D. Stucky, J. Am. Chem. Soc. 1998, 120, 6024.
    14. G. J. D. A. A. Soler-illia, C. Sanchez, B. Lebeau, J. Patarin, Chem. Rev. 2002, 102, 4093.
    15. N. Israelachvili, D. J. Mitchell, B. W. Niham, J. Chem. Soc.,Faraday Trans. 2, 1976, 72, 1525.
    16. Q. Huo, R. Leon, P. M. Petroff, G. D. Stucky, Science, 1995, 268, 1324.
    17. S. H. Tolbert, C. C. Landry, G. D. Stucky, B. F. Chmelka, P. Norby, J. C. Hanson, A. Monnier, Chem. Mater., 2001, 13, 2247.
    18. R. Long, R.T. Yang, Catal. Lett., 1998, 52, 91.
    19. Q.H. Xia, K. Hidajat, S. Kawi, Catal. Today, 2001, 68, 255.
    20. (a)U. Junges, W. Jacobs, I. Voigt-Martin, B. Krutzsch, F. Schüth, J. Chem. Soc., Chem. Commun., 1995, 2283. (b) J. Michalik, D. Brown, J.-S. Yu, M. Danilczuk, J.Y. Kim, L. Kevan, Phys. Chem. Chem. Phys., 2001, 3, 1705.
    21. P. Yang, D. Zhao, B. F. Chemelka, G. D. Stucky, Chem. Mater,. 1998, 10, 2033.
    22. K. B. Lee, S. M. Lee, J. Cheon, Adv. Mater., 2001, 13, 517.
    23. M. Okumura, S. Nakamura, S. Tsubota, T. Nakamura, M. Azuma, M. Haruta, Catal.Lett., 1998, 51, 53.
    24. D. Zhao, P. Yang, N. Melosh, J. Feng, B. F. Chmelka, G. D. Stucky, Adv. Mater., 1998, 10, 1380.
    25. (1)T. A. Doorling, B. W. J. Lynch, R. L. Moss, J. Catal., 1971, 20, 106. (2)J. R. Anderson, “ Structure of Metallic Catalysis ”, Academic, New York (1975) 164.
    26. C. M. Yang, H. S, Sheu, K. J. Chao, Adv. Funct. Mater., 2002, 12, 143.
    27. C. M Yang, P. H. Liu, Y. H. Ho, C. Y. Chiu, K. J. Chao, Chem. Mater., 2003, 15, 275.
    28. C.L. Wang , G. S. Zhu , J. Li , X. H. Cai , Y. H. Wei , D. L. Zhang , S. L. Qiu, Chemistry -A European Journal, 2005, 11, 4975.
    29. Y. Jiang, Q. Gao, J. Am. Chem. Soc., 2006, 128, 716.
    30. R. M. Rioux, H. Song, J. D. Hoefelmeyer, P. Yang, G. A. Somorjai, J. Phys. Chem. B, 2005, 109, 2192.
    31. Z. Konya, V. F. Puntes, I. Kiricsi, J. Zhu, A. P. Alivisatos, G. A. Somorjai, Catal. Lett., 2002, 81, 137.
    32. J. Zhu, Z. Kónya, V. F. Puntes, I. Kiricsi, C. X. Maio, J. W. Ager, A. P. Alivisatos, G. A. Somorjai, Langmuir, 2003, 19, 4396.
    33. H. Zhu, B. Lee, S. Dai, S. Overbury, Langmuir, 2003, 19, 3974.
    34. O. Dag, O. Samarskaya, N. Coombs, G. A. Ozin, J. Mater. Chem., 2003, 13, 328.
    35. C. Aprile, A. Abad, H. Garcıa, A. Corma, J. Mater. Chem., 2005, 15, 4408
    36. P. Krawiec, E. Kockrick, P. Simon, G. Auffermann, S. Kaskel, Chem. Mater., 2006, 18, 2663.
    37. C. Y. Chen, H. X. Li, M. E. Davis, Microporous Mat., 1993, 2, 17.
    38. X. S. Zhao, C. Q. Lu, A. K. Whittaker, G. J. Millar, H. Y. Zhu, J. Phys. Chem. B, 1997, 101, 6525.
    39. F. Kleitz, W. Schmidt, F. Schüth, Microporous Mesoporous Mater., 2003, 65, 1.
    40. F. Kleitz, W. Schmidt, F. Schüth, Microporous Mesoporous Mater. 2001, 65, 95.
    41. M. T. J. Keene, R. D. M. Gougeon, R. Denoyl, R. H. Harris, J. Rouquerol, P. L. Llewellyn, J. Mater. Chem., 1999, 9, 2843.
    42. R. Schmidt, D. Akporiaye, M. StoÈ cker and O. H. Ellestad, Stud. Surf. Sci. Catal., 1994, 84, 61.
    43. J. Ryczkowski, J. Goworek, W. Gac, S. Pasieczna, T. Borowiecki, Thermochimica Acta, 2005, 434, 2.
    44. J. Goworek, A. Borowka, R. Zalewski, R. Kusak, J. Therm. Anal. Calorim. 2005, 79, 555
    45. J. Patarin, Angew. Chem., Int. Ed. 2004, 43, 3878.
    46. Z. Huang, L. Huang, S. C. Shen, C. C. Poh, K. Hidajat, S. Kawi, S. C. Ng, Microporous Mesoporous Mater. 2005, 80, 157.
    47. W. A. Gornes, L. A. M. Cardoso, A. R. E. Gonzaga, L. G. Aguiar, H. M. C. Andrade, Mater. Chem. Phys. 2005, 93, 133.
    48. M. T. J. Keene, R. Denoyel, P. L. Llewellyn, Chem. Commun., 1998, 2203.
    49. G. BIchel, R. Denoyel, P. L. Llewellyn, J. Rouquerol, J. Mater. Chem., 2001, 11,589.
    50. A. N. Parikh, A. Navrotsky, Q. H. Li, C. K. Yee, M. L. Amweg, A. Corma, Microporous Mesoporous Mater. 2004, 76, 17.
    51. P. T. Tanev, T. J. Pinnavaia, Chem. Mater., 1996, 8, 2068.
    52. C. W. Jones, K. Tsuji, T. Takewaki, L. W. Beck, M. E. Davis, Microporous Mesoporous Mater. 2001, 48, 57.
    53. X. B. Lu, W. H. Zhang, R. He, X. Li, Ind. Eng. Chem. Res., 2003, 42, 653.
    54. C. N. Wu, T. S. Tsai, C. N. Liao, K. J. Chao, Microporous Mater., 1996, 7, 173.
    55. C. F. Baes, R. E. Mesmer, “The Hydrolysis of Cations”, Krieger, Malabar, FL., 1986, p.266.
    56. R. Ryoo, S. H. Joo, J. M. Kim, J. Phys. Chem. B, 1999, 103, 7435.
    57. C. N. Wu, T. S. Tsai, C. N. Liao, K. J. Chao, Microporous Mater., 1996, 7, 173.
    58. D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, G. D. Stucky, J. Am. Chem. Soc., 1998, 120, 6024.
    59. B. D. Cullity, S. R. Stock, “Elements of X-ray diffraction”, Prentice Hall (2001).
    60. F. Rouquerol, J. Rouquerol, K. Sing, “Adsorption by Powders and Porous Solids”, Academic Press (1999).
    61. R. Ryoo, S. H. Joo, J. M. Kim, J. Phys. Chem. B, 1999, 103, 7435.
    62. E. A. Stern, M. Newville, B. Ravel, Y. Yacoby, D. Haskel, Physica B, 1995, 208-209, 117.
    63. K. Okumura, M. Niwa, J. Phys. Chem. B, 2000, 104, 9670.
    64. D. D. L. Chung, P. W. De Haven, H. Arnold, D. Ghosh, “X-Ray Diffraction at Elevated Temperatures: A Method for In-Situ Process Analysis”, VCH Publishers, New York (1993).
    65. F. A. Lewis, “The Palladium Hydrogen System”, Academic Press, London / New York, (1967).
    66. S. C. Srivastava, L. Newman, Inorg. Chem., 1966, 5, 1506.
    67. B. Veisz, Z. Kiraly, Langmuir, 2003, 19, 4817.
    68. H. P. Lin, C. Y. Mou, Acc. Chem. Res., 2002, 35, 927.
    69. Q. Huo, D. I. Margolese, U. Ciesla, P. Feng, T. E. Gier, P. Sieger, R. Leon, P. M. Petroff, F. Schüth, G. D. Stucky, Nature 1994, 368, 317.
    70. Q. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier, P. Sieger, A. Firouzi, B. F. Chmelka, F. Schüth, G. D. Stucky, Chem. Mater., 1994, 6, 1176.
    71. O. T. HOGDAHL, “The Radiochemistry of Palladium”, National Academy of Sciences, NAS-NS. 3052, (1961).
    72. E. Negishi, A. de Meijere, “Handbook of Organopalladium Chemistry for Organic Synthesis”, John Wiley & Sons, New York, (2002).
    73. R. Schmidt, D. Akporiaye, M. StoÈ cker and O. H. Ellestad, Stud. Surf. Sci. Catal., 1994, 84, 61.
    74. A. Montes, E. Cosenza, G. Giannetto, E. Urquieta, R. A. de Melo, N. S. Gnep and M. Guisnet, Stud. Surf. Sci. Catal., 1998, 117, 237.
    75. F. Kleitz, W. Schmidt, F. Schüth, Microporous Mesoporous Mater., 2003, 65, 1.
    76. F. Kleitz, W. Schmidt, F. Schüth, Microporous Mesoporous Mater., 2001, 65, 95.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE