研究生: |
謝進華 Chin-Hua Hsieh |
---|---|
論文名稱: |
低維度鎵基奈米結構之合成、鑑定及應用研究 Low-Dimensional Ga-Based Nanostructures:Synthesis, Characterizations and Applications |
指導教授: |
周立人
Li-Jen Chou |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 124 |
中文關鍵詞: | 一維鎵基奈米材料 、局部表面電漿共振效應 |
外文關鍵詞: | One-dimensional Ga-based nanomaterials, Localized Surface Plasma Resonance, SPR |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
The present thesis focused on the synthesis, characterizations and applications of the one-dimensional Ga-based nanomaterials. The thesis includes the following topics: (1, 2) growth processes of pure GaN and Ga2O3 nanowires, (3, 4) growth processes and nanodevices of Au-peapodded Ga2O3, core-shell Au-Ga2O3, and Au-Ga2O3-GaN (metal-oxide-semiconductor, MOS) nanowires, (5) in-situ observation of Au-Ga2O3 complex nanowires during thermal annealing.
Novel metal–insulator heterostructures made of twinned Ga2O3 nanowires embedding discrete gold particles or continuous gold nanowires were through a reaction between gold, gallium, and silica at 800 °C. Both of the two crystallized Au-Ga2O3 complex nanowires investigated on a designed single-nanowire device, exhibit the highly photosenitive absorption of 532 and 632 nm lights, respectively, owing to the localized surface plasma resonance (LSPR) effects of embedded Au nanomaterials in dielectric matrix.
Furthermore, the promising field emission proporties of Au-Ga2O3 core-shell nanowires were demonstrated by the measurements of single and multiple nanowires with the turn on field of 0.12-0.24 V/μm in present study. Based on the in-situ observation of Au-Ga2O3 complex nanowires during thermal annealing, in addition, various Au-peapodded nanowires were well-designed by the core-shell Au-Ga2O3 nanowires via thermal annealing processes to be tunable nano-photonic switch devices for visible lights.
本論文主要研究一維鎵基奈米材料的合成、鑑定與應用,共分為以下幾個主題:(1, 2)純氮化鎵、氧化鎵奈米線之合成技術,(3, 4) 一維豆莢狀金-氧化鎵 (Au-Peapodded Gallium Oxide Nanowires)與核殼狀金-氧化鎵 (Core-Shell Au-Gallium Oxide Nanowires) 複合奈米線之合成技術與奈米元件製作,(5)金-氧化鎵複合奈米線之臨場熱退火觀測研究。
藉由金屬鎵、金及二氧化矽於800 °C下反應,便可生成具有雙晶結構之一維豆夾狀及核殼狀金-氧化鎵複合奈米線。此兩種單晶結構之複合奈米線材料,因其具有局部表面電漿共振效應(Localized Surface Plasma Resonance, SPR),而具有對532及632奈米波長之可見光的高感光度吸收效應。
另外,藉由單根及多根一維核殼狀金-氧化鎵奈米線之場發射量測,發現其具有相當低的啟動電場強度(Turn on Field = 0.12-0.24 V/μm),因此很有潛力用來製作電子發射源。另一方面藉由臨場穿透式電子顯微鏡的協助,可將一維核殼狀金-氧化鎵奈米線,經由簡單地熱退火實驗,而製成許多各式各樣的一維豆莢狀金-氧化鎵奈米線,進而製作出對不同的可見光感測奈米元件。
Chapter 1
[1.1] K. Havancsák, “Nanotechnology at Present and its Promises in the Future”, Materials Science Forum, 414-415, (2003), pp 85-94.
[1.2] J. D. Meindl, Q. Chen, and J. A. Davis, “Limits on Silicon Nanoelectronics for Terascale Integration”, Science, 293, (2001), pp 2044-2049.
[1.3] K. E. Drexler, “Machine-Phase Nanotechnology”, Sci. Am. 285, (2001), pp 74-75.
[1.4] V. Balzani, A. Credi, and M. Venturi, “The Bottom-Up Approach to Molecular-Level Devices and Machines”, Chem. Eur. J., 8, (2002),pp 5524-5532.
[1.5] K. K. Likharev and T. Claeson, “Single Electronics”, Sci. Am., 266, (1992), pp 80-85.
[1.6] P. Alivisatos, “Semiconductor Clusters, Nanocrystals, and Quantum Dots”, Science, 271, (1999), pp 933-934.
[1.7] J. M. Krans, J. M. van Rutenbeek, and L. J. de Jongh, “The Signature of Conductance Quantization in Metallic Point Contacts”, Nature, 375, (1995), pp 767-768.
[1.8] K. W. Adu, H. R. Gutiérrez, U. J. Kim, G. U. Sumanasekera, and P. C. Eklund, “Confined Phonons in Si Nanowires”, Nano Lett., 5, (2005), pp 409-414.
[1.9] M. F. Crommie, C. P. Lutz, and D. M. Eigler, “Confinement of Electrons to Quantum Corrals on A Metal-surface”, Science, 262, (1993), pp 218-219.
[1.10] G. Markovich, C. P. Collier, and J. R. Heath, “Architectonic Quantum Dot Solids”, Acc. Chem. Res., 32, (1999), pp 415-423.
[1.11] A. N. Goldstein, C. M. Echer, and A. P. Alivisatos, “Melting in Semiconductor Nanocrystals”, Science, 256, (1992), pp 1425-1427.
[1.12] B. Ha, S. H. Seo, J. H. Cho, C. S. Yoon, J. Yoo, G.-C. Yi, C. Y. Park, and C. J. Lee, “Optical and Field Emission Properties of Thin Single-Crystalline GaN Nanowires”, J. Phys. Chem. B, 109, (2005), pp 11095-11099.
[1.13] S. Iijima, “Helical Microtube of Graphitic Carbon”, Nature, 354, (1991), pp 56-58.
[1.14] J. H. Choy, E. S. Jang, J. H. Won, J. H. Chung, D. J. Jang and Y. W. Kim, “Soft Solution Route to Directionally Grown ZnO Nanorod Arrays on Si Wafer; Room-Temperature Ultraviolet Laser”, Adv. Mater., 15, (2003), pp 1911–1914.
[1.15] Y. L. Chueh, M. T. Ko, L. J. Chou, L. J. Chen, C. S. Wu, and C. D. Chen, “TaSi2 Nanowires: A Potential Field Emitter and Interconnect”, Nano Lett., 6, (2006), pp 1637-1644.
[1.16] J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H. J. Choi and P. Yang, “Single-crystal gallium nitride nanotubes”, Nature, 422, (2003), pp 599-602.
[1.17] W. Wang, B. Zeng, J. Yang, B. Poudel, J. Huang, M. J. Naughton, and Z. Ren, “Aligned Ultralong ZnO Nanobelts and Their Enhanced Field Emission”, Adv. Mater., 18, (2006), pp 3275–3278.
[1.18] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-Dimensional Nanostructures: Synthesis, Characterization, and Applications”, Adv. Mater., 15, (2003), pp 353-389.
[1.19] R. S. Wagner and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth”, Appl. Phys. Lett., 4, (1964), pp 89-90.
[1.20] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport”, Adv. Mater., 13, (2000), pp.113-116.
[1.21] Y Wu and P. Yang, “Germanium Nanowire Growth via Simple Vapor Transport”, Chem. Mater., 12, (2000), pp.605-607.
[1.22] B. Fuhrmann, H. S. Leipner, and H. R. Höche, “Ordered Arrays of Silicon Nanowires Produced by Nanosphere Lithography and Molecular Beam Epitaxy”, Nano Lett., 5, (2005), pp 2524-2527.
[1.23] C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen, “Catalytic Growth and Characterization of Gallium Nitride Nanowires”, J. Am. Chem. Soc., 123, (2001), pp 2791-2798.
[1.24] J. Zhang and F. Jiang, “Catalytic growth of Ga2O3 nanowires by physical evaporation and their photoluminescence properties”, Chemical Physics, 289, (2003), pp 243-249.
[1.25] X. Duan and C. M. Lieber, “General Synthesis of Compound Semiconductor Nanowires”, Adv. Mater., 12, (2000), pp 298-302.
[1.26] Y. Wu and P. Yang, “Direct Observation of Vapor-Liquid-Solid Nanowire Growth”, J. Am. Chem. Soc., 123, (2001), pp 3165-3166.
[1.27] Z. W. Pan, Z. R. Dai, and Z. Lin Wang, “Nanobelts of Semiconducting Oxides”, Science, 291, (2001), pp 1947-1949.
[1.28] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, “Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays”, Angew. Chem. Int. Ed., 42, (2003), pp 3031-3034.
[1.29] M. T. Chang, L. J. Chou, Y. L. Chueh, Y. C. Lee, C. H. Hsieh, C. D. Chen, Y. W. Lan, L. J. Chen, “Nitrogen-doped tungsten oxide nanowires: low temperature synthesis on Si and the electrical, optical, and field-emission properties”, Small, 3, (2007), pp 658-664.
[1.30] Y. L. Chueh, M. W. Lai, J. Q. Liang, L. J. Chou, and Z. L. Wang, “Systematic study on the growth of the aligned arrays of α-Fe2O3 and Fe3O4 nanowires by a vapor-solid process”, Adv. Funct. Mater., 16, (2006), pp 2243-2251.
[1.31] X. Xiang, C. B. Cao, Y. J. Guo, and H. S. Zhu, “A simple method to synthesize gallium oxide nanosheets and nanobelts”, Chemical Physics Letters, 378, (2003), pp 660-664.
[1.32] H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang, D. P. Yu, and Y. Ding, Q. L. Hang, S. Q. Feng, “Ga2O3 nanowires prepared by physical evaporation”, Solid State Communications, 109, (1999), pp 677-682.
[1.33] H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang, D. P, Yu, Y. Ding, Q. L. Hang and S.Q. Feng, “Ga2O3 Nanowires Prepared by Physical Evaporation”, Solid State Comm., 109, (1999), pp 677-682.
[1.34] K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons and W. E. Buhro, “Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth”, Science, 270, (1995), pp 1791-1794.
[1.35] X. Lu, T. Hanrath, K. P. Johnston and B. A. Korgel, “Growth of Single Crystal Silicon Nanowires in Supercritical Solution from Tethered Gold Particles on a Silicon Substrate”, Nano Lett., 3, (2003), pp 93-99.
[1.36] W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, “Oxide-assisted growth and optical characterization of gallium-arsenide nanowires”, Appl. Phys. Lett., 78, (2001), pp 3304-3306.
[1.37] W. S. Shi, H. Y. Peng, N. Wang, C. P. Li, L. Xu, C. S. Lee, R. Kalish and S. T. Lee, “Free-Standing Single Crystal Silicon Nanoribbons”, J. Am. Chem. Soc., 123, (2001), pp 11095-11096.
[1.38] D. L. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos, and P. L. McEuen, “A Single-Electron Transistor Made from a Cadmium Selenide Nanocrystal”, Nature, 389, (1997), pp 699-701.
[1.39] M. H. Devoret and R. J. Schoelkopf, “Amplifying Quantum Signals with the Single-Electron Transistor”, Nature, 406, (2000), pp 1039-1047.
[1.40] Y. Cui and C. M. Lieber, “Functional Nanoscale Electronic Devices Assembled using Silicon Nanowire Building Blocks”, Science, 291, (2001), pp 851-853.
[1.41] Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic Gates and Computation from Assembled Nanowire Building Blocks”, Science, 294, (2001), pp 1313-1317.
[1.42] Y. Cui and C. M. Lieber, “Functional Nanoscale Electronic Devices Assembled using Silicon Nanowire Building Blocks”, Science, 291, (2001), pp 851-853.
[1.43] X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices”, Nature, 409, (2001), pp 66-69.
[1.44] D. S. Han, J. Park, K. W. Rhie, S. Kim and J. Chang, “Ferromagnetic Mn-doped GaN nanowires”, Appl. Phys. Lett., 86, (2005), pp 032506-1-3.
[1.45] P. V. Radovanovic, C. J. Barrelet, S. Gradecˇak, F. Qian, and C. M. Lieber, “General Synthesis of Manganese-Doped II-VI and III-V Semiconductor Nanowires”, Nano Lett., 5, (2005), pp 1407-1411.
[1.46] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics”, Nature, 415, (2002), pp 617-620.
[1.47] Y. Wu, R. Fan, and P. Yang, “Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires”, Nano Lett., 2, (2002), pp 83-86.
[1.48] L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, “Epitaxial Core-Shell and Core/Multi-Shell Nanowire Heterostructures”, Nature, 420, (2002), pp 57-61.
[1.49] H. J. Choi, J. C. Johnson, R. He, S. K. Lee, F. Kim, P. Pauzauskie, J. Goldberger, R. J. Saykally, and P. Yang, “Self-Organized GaN Quantum Wire UV Lasers”, J. Phys. Chem. B, 107, (2003), pp 8721-8725.
[1.50] B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources”, Nature, 449, (2007), pp 885-890.
[1.51] Y. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, “Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures”, Nature, 430, (2004), pp 61-65.
[1.52] F. Qian, S. Gradečak, Y. Li,C. Y. Wen, and C. M. Lieber, “Core/Multishell Nanowire Heterostructures as Multicolor, High-Efficiency Light-Emitting Diodes”, Nano Lett., 5, (2005), pp 2287-2291.
[1.53] M. S. Hu, H. L. Chen, C. H. Shen, L. S. Hong, B. R. Huang, K. H. Chen, and L. C. Chen, “Photosensitive gold-nanoparticle-embedded dielectric nanowires”, Nature Materials, 5, (2006), pp 102-106.
[1.54] J. C. Zolper, R. J. Shul, A. G. Baca, R. G. Wilson, S. Pearton, and R. A. Stall, “Ion-implanted GaN junction field effect transistor”, Appl. Phys. Lett., 68, (1996), pp 2273-2275.
[1.55] Y. Huang, X. Duan, Y. Cui, and C. M. Lieber, “Gallium Nitride Nanowire Nanodevices”, Nano Lett., 2, (2002), pp 101-104.
[1.56] W. Han, S. Fan, Q. Li, and Y. Hu, “Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube–Confined Reaction”, Science, 277, (1997), pp 1287-1289.
[1.57] S. K. Lee, H. J. Choi, P. Pauzauskie, P. Yang, N. K. Cho, H. D. Park, E. K. Suh, K. Y. Lim, and H. J. Lee, “Gallium nitride nanowires with a metal initiated metal-organic chemical vapor deposition (MOCVD) approach”, Phys. stat. sol., 241, (2004), pp 2775-2778.
[1.58] E. A. Stach, P. J. Pauzauskie, T. Kuykendall, J. Goldberger, R. He, and P. D. Yang, “Watching GaN Nanowires Grow”, Nano Lett., 3, (2003), pp 867-869.
[1.59] H. Y. Peng, N. Wang, X.T. Zhou, Y. F. Zheng, C. S. Lee, and S. T. Lee, “Control of growth orientation of GaN nanowires”, Chem. Phys. Lett., 359, (2002), pp 241-245.
[1.60] W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, “Microstructures of gallium nitride nanowires synthesized by oxide-assisted method”, Chem. Phys. Lett., 345, (2001), pp 377-380.
[1.61] H. M. Kim, D. S. Kim, D. Y. Kim, T. W. Kang, Y. H. Cho, and K. S. Chung, “Growth and characterization of single-crystal GaN nanorods by hydride vapor phase epitaxy”, Appl. Phys. Lett., 81, (2002), pp 2193-2195.
[1.62] R. Chan, M. Feng,a! N. Holonyak, Jr., and G. Walter, “Microwave operation and modulation of a transistor laser”, Appl. Phys. Lett., 86, (2005), pp 131114-1-3.
[1.63] K. Berthold, R. A. Höpfel, and E. Gornik, “Surface plasmon polariton enhanced photoconductivity of tunnel junctions in the visible”. Appl. Phys. Lett. 46, (1985), pp 626–628.
Chapter 2
Chapter 3
[3.1] C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen, “Catalytic Growth and Characterization of Gallium Nitride Nanowires”, J. Am. Chem. Soc., 123, (2001), pp 2791-2798.
[3.2] Y. S. Park, C. M. Park, D. J. Fu, T. W. Kang, and J. E. Oh, “Photoluminescence studies of GaN nanorods on Si (111) substrates grown by molecular-beam epitaxy”, Appl. Phys. Lett., 85, (2004), pp 5718-5720.
[3.3] G. S. Cheng,L. D. Zhang, Y. Zhu, G. T. Fei, L. Li, C. M. Mo, and Y. Q. Mao, “Large-scale synthesis of single crystalline gallium nitride nanowires”, Appl. Phys. Lett., 75, (1999), pp 2455-2457.
[3.4] S. Lazar, G. A. Botton, M. Y. Wu, F.D. Tichelaar, and H.W. Zandbergen, “Materials science applications of HREELS in near edge structure analysis andlow-energy loss spectroscopy”, Ultramicroscopy, 96, (2003), pp 535-546.
[3.5] G. S. Cheng, S. H. Chen, X. G. Zhu, Y. Q. Mao, and L. D. Zhang, “Highly ordered nanostructures of single crystalline GaN nanowires in anodic alumina membranes”, Mater. Sci. Eng. A, 286, (2000), pp 165-168.
[3.6] C. C. Tang, S. S. Fan, M. L. de la Chapelle, and P. Li, “Silica-assisted catalytic growth of oxide and nitride nanowires”, Chem. Phys. Lett., 333, (2001), pp 12-15.
[3.7] C. C. Tang, S. S. Fan, H. Y. Dang, P. Li, and Y. M. Liu, “Simple and high-yield method for synthesizing single-crystal GaN nanowires”, Appl. Phys. Lett., 77, (2000), pp 1961-1963
[3.8] C. M. Balkas and R. F. Davis, “Synthesis Routes and Characterization of High-Purity, Single-Phase Gallium Nitride Powders”, J. Am. Ceram. Soc., 79, (1996), pp 2309-2312.
[3.9] H. Okamoto and T. B. Massalski, “Phase Diagrams of Binary Gold Alloys”, ASM International, Materials Park, (1987), p 112.
Chapter 4
[4.1] B. Geng, L. Zhang, G. Meng, T. Xie, X. Peng, and Y. Lin, “Large-scale synthesis and photoluminescence of single-crystalline β-Ga2O3 nanobelts”, J. Cryst. Growth, 259, (2003), pp 291-295.
[4.2] Y. Wang, J. Xu, R.M. Wang, and D.P. Yu, “Electron microscopy investigation of gallium oxide micro/nanowire structures synthesized via vapor phase growth”, Micron, 35, (2004), pp 447-453.
[4.3] X. Xiang, C. B. Cao, Y. J. Guo, and H. S. Zhu, “A simple method to synthesize gallium oxide nanosheets and nanobelts”, Chemical Physics Letters, 378, (2003), pp 660-664.
[4.4] B. Geng, L. Zhang, G. Meng, T. Xie, X. Peng, and Y. Lin, “Large-scale synthesis and photoluminescence of single-crystalline β-Ga2O3 nanobelts”, J. Cryst. Growth, 259, (2003), pp 291-295.
Chapter 5
[5.1] J. S. Wu, S. Dhara, C. T. Wu, K. H. Chen, Y. F. Chen, and L. C. Chen, “Growth and Optical Properties of Self-Organized Au2Si Nanospheres Pea-Podded in a Silicon Oxide”, Adv. Mater., 14, (2002), pp1847-1850.
Chapter 6
[6.1] Y. L. Chueh, L. J. Chou, S. L. Cheng, J. H. He, W. W. Wu, and L. J. Chen, “Synthesis of taperlike Si nanowires with strong field emission”, Appl. Phys. Lett., 86, (2005), pp 133112-1-3.
[6.2] J. H. Wang, T. H. Yang, W. W. Wu, L. J. Chen, C. H. Chen, and C. J. Chu, “Synthesis and growth mechanism of pentagonal Cu nanobats with field emission characteristics”, Nanotechnology, 17, (2006), pp 719-722.
[6.3] A. Dangwal, C. S. Pandey, G. Müller, S. Karim, T. W. Cornelius, and C. Trautmann, “Field emission properties of electrochemically deposited gold nanowires”, Appl. Phys. Lett., 92, (2008), pp 063115-1-3.
[6.4] S. H. Jo, Y. Tu, Z. P. Huang, D. L. Carnahan, D. Z. Wang, and Z. F. Rena, “Effect of length and spacing of vertically aligned carbon nanotubes on field emission properties”, Appl. Phys. Lett., 82, (2003), pp 3520-3522.
[6.5] J. J. Kim, D. Shindo, Y. Murakami, W. Xia, L. J. Chou, and Y. L. Chueh, “Direct Observation of Field Emission in a Single TaSi2 Nanowire”, Nano Lett., 7, (2007), pp 2243-2247.
Chapter 7
Chapter 8
[8.1] G. Pirio, P. Legagneux, D. Pribat, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, and W. I. Milne, “Fabrication and electrical characteristics of carbon nanotube field emission microcathodes with an integrated gate electrode”, Nanotechnology, 13, (2002), pp 1-4.