研究生: |
黃坤富 Fun-Fu Huang |
---|---|
論文名稱: |
以有機金屬化學氣相磊晶法成長1.3微米砷化銦/砷化鎵量子點異質結構與砷化銦/砷化鎵量子點共振腔發光二極體 Growth of 1.3μm InAs/GaAs Quantum Dot Heterostructure and InAs/GaAs Quantum Dot Resonant Cavity Light-Emitting Diodes by Metalorganic Chemical Vapor Deposition |
指導教授: |
吳孟奇
Meng-Chyi Wu |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 90 |
中文關鍵詞: | 有機金屬化學氣相磊晶法 、砷化銦量子點 、共振腔發光二極體 |
外文關鍵詞: | MOCVD, InAs QD, RCLED |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文的主要目的是以有機金屬化學氣相磊晶法成長砷化銦/砷化鎵量子點異質結構與製作1.3微米砷化銦/砷化鎵量子點共振腔發光二極體並探討其特性。
目前自聚性量子點異質結構是藉由「史傳斯基-克拉斯坦諾夫」磊晶模式成長,且其發光與結構特性由磊晶參數決定。因此,我們首先研究磊晶溫度與磊晶速度對砷化銦量子點的影響。當磊晶溫度從540降到480℃時,我們發現較低的磊晶溫度較易形成量子點,且在500℃下成長之量子點有最佳的發光特性,其發光波長可達1.3微米,半高寬為30.8毫電子伏特。在改變砷化銦量子點的磊晶速度的實驗中,較低的磊晶速度形成較多的不規則島狀物,而這些島狀物可能產生缺陷,造成發光效率下降。
之後,我們成功地製作1.3微米發光的砷化銦量子點共振腔發光二極體。我們以一層砷化銦量子點埋藏於砷化鎵中作為共振腔發光二極體的主動層,再以一對氮化矽/氧化矽與20對砷化鋁鎵/砷化鎵分佈布拉格反射層作為共振腔發光二極體的上下層鏡面,其中,利用介電質材料之布拉格反射層作為共振腔發光二極體的上層鏡面可避免砷化銦量子點在高磊晶溫度下發生互混效應而造成輸出光功率下降。砷化銦量子點共振腔發光二極體於室溫下,其發光波長可達1.32微米,半高寬為14毫電子伏特,在注入電流為100毫安培時其輸出光功率為28毫瓦。
最後,為了進一步提升砷化銦量子點的密度與均勻性,我們將砷化銦量子點成長於砷化銦鎵應力緩衝層上並研究其特性。相較於砷化銦量子點成長於砷化鎵上,我們發現將砷化銦量子點成長於砷化銦鎵應力緩衝層上有較高的密度與較佳的均勻性,符合我們的預期。在低溫(80K)下砷化銦量子點的光激螢光譜圖中,在最強激發光功率下,由於填態效應,我們觀察到砷化銦量子點的第一、第二激發態出現於高能側;在變溫下量測成長於砷化銦鎵應力緩衝層上之砷化銦量子點的光激螢光譜圖,發現砷化銦量子點的能隙依循瓦希尼經驗公式隨溫度而變化,而砷化銦量子點光激螢光強度隨溫度上生而下降的「熱熄」現象,可能與缺陷有關。之後,我們製作p-i-n結構的砷化銦量子點/砷化銦鎵應力緩衝層邊射型發光二極體其外部量子效率為0.024%,發光波長可達1330奈米。
The main intention of this thesis is growth and characterization of InAs/GaAs quantum dot (QD) heterostructure with 1.3 μm emission wavelength and fabricates 1.3 μm-emitting InAs/GaAs quantum dot resonant cavity light-emitting diode (QD RCLED). The QD heterostructure have been successfully realized via Stranski-krastanow growth mode, and the structural and the optical characteristics of InAs QDs determinate by growth parameters. Firstly, we investigate the growth-temperature and growth-rate effect of InAs QDs on GaAs substrate grown by low pressure metalorganic chemical vapor deposition (LP MOCVD). The lower growth temperature makes for the formation of InAs QDs with different growth temperatures, and the optimum optical characteristic of InAs QDs is grown at 500℃, which can extend the emission wavelength to 1.3 μm with strongest photoluminescence (PL) intensity, the narrowest full width at half maximum of 30.8 meV as compare to grow at other growth temperatures. In various growth rates tuning experiment, lower growth rate forms more irregular relaxed islands, and the weaker PL peak intensity is shown in the PL spectrum.
Secondly, InAs QD resonant cavity light-emitting diode with 1.32 μm-emitting has been successfully fabricated at room temperature in our work. The active medium of QD RCLED was a single-sheet 3.0 ML InAs QDs inserted in GaAs matrix grown by metalorganic chemical vapor deposition. The epitaxial AlGaAs/GaAs pairs and one dielectric SiO2/Si3N4 pair as distributed Bragg reflectors (DBRs) are fabricated as the bottom and top mirrors of QD RCLEDs, which can provide high cavity factor and avoid the In/Ga intermixing of InAs QD during fabricating the top mirror. The InAs/GaAs QD RCLEDs present an emission wavelength of 1.318 mm, a narrow full width at half maximum in the electroluminescent spectrum of 14 meV at 20 mA, a high Q factor of 73.9, a low redshift rate with injection current of 0.033 nm/mA, and a light-output power of 28 mW at 100 mA.
Finally, we investigate the structural and the optical characteristics of InAs QDs grown on InGaAs strained buffer layer (SBL). The InAs QD density can increase to 3.5 x 1010 cm-2 as InAs QD deposited on InGaAs SBL, and the QD size uniformity is better than InAs QD directly deposited on GaAs layer. Under highest excited density at low temperature, PL spetra shows the ground, first and second states of InAs QDs due to the state-filling effect; the temperature-dependent PL shows the PL peak energy has a redshift following the Varshni relation and an unusual temperature dependence of linewidth which first reduces and then increases with increasing temperature for the InAs QDs on the InGaAs SBL. The PL thermal quenching arises from the carrier escape of the dots to nonradiative recombination centers like defects. The single sheet InAs QD/ InGaAs SBL edge-emitting p-i-n LEDs is emitting at 1330 nm with an external quantum efficiency of 0.024% at room temperature.
[1] Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current”, Appl. Phys. Lett., vol 40,p.p 939-942, 1982.
[2] D. Bimberg, M. Grunddmann and N. N. Ledentsov, Quantum Dot Herterostuctures (John Wiley & Sons Ltd, 1999) p. 19.
[3] M. Sugawara, Self-Assembled InGaAs/GaAs Quantum Dots, vol 60 of Semiconductor and Semimetals (Academic Press, New York,1999) p.121
[4] V. A. Shchukin, N. N. Ledentsov, D. Bimberg, Epitaxy of Nanostructure (Springer, 2003) p.156
[5] M. Kondow, T. Kitatani, M. C. Larson, K. Nakahara, and K. Uomi, “Gas source MBE of GaInNAs for long-wavelength laser diodes,” presented at 6th Int. Conf. on CBE and Related Growth Techniques, Montreux, Switzerland, 1997.
[6] R. Fehse, I. Marko and A.R. Adams,” Long wavelength lasers on GaAs substrates”, IEE Proc.-Circuits Devices Syst., Vol. 150, No. 6,p.p 521-528,2003.
[7] N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. K. Kop’ev, Zh. I. Alferov, U. Richter, P. Werner, U. Gosele, and J. Heydenereich, “ Low threshold, large T0 injection laser emission from (InGa)As quantum dots,” Electron. Lett., vol 30, p.p 1416-1417, 1994.
[8] R. Mirin, A. Gossard, and J. Bowers, “Room temperature lasing from InGaAs quantum dots,” Electron. Lett., vol. 32, pp. 1732–1734, 1996.
[9] H. Shoji, Y. Nakata, K. Mukai, Y. Sugiyama,M. Sugawara, N. Yokoyama, and H. Ishikawa, “Self-formed InGaAs quantum dot lasers with multistacked dot layer,” Jpn. J. Appl. Phys., vol. 35, pp. L903–L905, 1996.
[10] H. Saito, K. Nishi, I. Ogura, S. Sugou, and Y. Sugimoto, “Roomtemperature lasing operation of a quantum-dot vertical-cavity surfaceemitting laser,” Appl. Phys. Lett., vol. 69, pp. 3140–3142, 1996.
[11] K. Kamath, P. Bhattacharya, T. Sosnowski, T. Norris, and J. Phillips, “Room-temperature operation of In0.4Ga0.6As/GaAs self-organised quantum dot lasers,” Electron. Lett., vol. 32, no. 15, pp. 1374–1375, 1996.
[12] D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett., vol. 73, pp. 2564–2566, 1998.
[13] K. Mukai, Y. Nakata, K. Ohtsubo, M. Sugawara, N. Yokoyama, and H. Ishikawa, “1.3-μm CW lasing of InGaAs-GaAs quantum dots at room temperature with a threshold current of 8 mA,” IEEE Photon. Technol.Lett., vol. 11, no. 10, pp. 1205–1207, 1999.
[14] G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, “Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well,” Electron. Lett., vol. 35, no. 14, pp. 1163–1164, 1999.
[15] A. E. Zhukov, A. R. Kovsh, N. A. Maleev, S. S. Mikhrin, V. M. Ustinov, A. F. Tsatsul’nikov,M. V.Maximov, B. V. Volovik, D. A. Bedarev, Y.M. Shernyakov, P. S. Kop’ev, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, “Long-wavelength lasing from multiply stacked InAs/InGaAs quantum dots on GaAs substrates,” Appl. Phys. Lett., vol. 75, pp. 1926–1928, 1999.
[16] G. Park, O. B. Shchekin, S. Csutak, D. L. Huffaker, and D. G. Deppe, “Room-temperature continuous-wave operation of a single-layered 1.3 μm quantum dot laser,” Appl. Phys. Lett., vol. 75, pp. 3267–3269, 1999.
[17] K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-insensitive eyeopening under 10-Gb/s modulation of 1.3-μm p-doped quantum dot lasers without current adjustments,” Jpn. J. Appl. Phys., vol. 43, no. 8B, pp. L1124–L1126, 2004.
[18] P. G. Eliseev, H. Li, A. Stinz, G. T. Liu, T. C. Newell, K. J. Malloy, and L. F. Lester, “Transition dipole moment of InAs/InGaAs quantum dots from experiments on ultralow-threshold laser diodes,” Appl. Phys. Lett., vol. 77, pp. 262–264, 2000.
[19] J. A. Lott, N. N. Ledentsov, V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, B. V. Volovik, Z. I. Alferov, and D. Bimberg, “InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3 μm,” Electron. Lett., vol. 36, no. 16, pp. 1384–1385, 2000.
[20] V. M. Ustinov, N. A. Maleev, A. R. Kovsh, and A. E. Zhukov, “Quantum dot VCSELs,” Phys. Status Solidi A, vol. 202, pp. 396–402, 2005.
[21] Y. H. Chang, P. C. Peng, W. K. Tsai, Gray Lin, FangI Lai, R. S. Hsiao, H. P. Yang, H. C. Yu, K. F. Lin, J. Y. Chi, S. C. Wang, and H. C. Kuo, “Single-Mode Monolithic Quantum-Dot VCSEL in 1.3 μm With Sidemode Suppression Ratio Over 30 dB”, Photon. Technol. Lett, vol 18, p.p 847-849, 2006
[22] R. L. Sellin, C. Ribbat, M. Grundmann, N. N. Ledentsov, and D. Bimberg, “Close-to-ideal device characteristics of high-power InGaAs/GaAs quantum dot lasers,” Appl. Phys. Lett., vol. 78, pp. 1207–1209, 2001.
[23] A. Passaseo, M. De Vittorio, M. T. Todaro, I. Tarantini, M. De Giorgi, R. Cingolani, A. Taurino, M. Catalano, A. Fiore, A. Markus, J. X. Chen, C. Paranthoen, U. Oesterle, andM. Ilegems, “Comparison of radiative and structural properties of 1.3 μm Inx Ga(1-x)As quantum-dot laser structures grown by metal-organic chemical vapor deposition and molecularbeam epitaxy: Effect on the lasing properties,” Appl. Phys. Lett., vol. 82, pp. 3632–3634, 2003.
[24] J. Tatebayashi, N. Hatori, H. Kakuma, H. Ebe, H. Sudo, A. Kuramata, Y. Nakata, M. Sugawara, and Y. Arakawa, “Low threshold current operation of self-assembled InAs/GaAs quantum dot lasers by metal-organic chemical vapor deposition,” Electron. Lett., vol. 39, no. 15, pp. 1130–1131, 2003.
[25] S. M. Kim,Y.Wang, M.Keever, and J. S. Harris, “High-frequencymodulation characteristics of 1.3-μm InGaAs quantum dot lasers,” IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 377–379, 2004.
[26] I. N. Kainander, R. L. Sellin, T. Kettler, N. N. Ledentsov, D. Bimberg, N. D. Zakharov, and P. Werner, “1.24 μm InGaAs/GaAs quantum dot lasers grown by metal-organic chemical vapor deposition using tertiarybutylarsine,” Appl. Phys. Lett., vol. 84, pp. 2992–2994, 2004.
[27] J.Tatebayashi,Y.Arakawa,N.Hatori,H.Ebe,M. Sugawara, H. Sudou, and A. Kuramata, “InAs/GaAs self-assembled quantum-dot lasers grown by metal-organic chemical vapor deposition—effects of postgrowth annealing on stacked InAs quantum dots,” Appl. Phys. Lett., vol. 85, pp. 1024–1026, 2004.
[28] J. Tatebayashi, N. Hatori, M. Ishida, H. Ebe, M. Sugawara, Y. Arakawa, H. Sudo, and A. Kuramata, “1.28 μm lasing from stacked InAs/GaAs quantum dots with low-temperature-grown AlGaAs cladding layer by metal-organic chemical vapor deposition,” Appl. Phys. Lett., vol. 86, pp. 053107-053109, 2005.
[29] N. Nuntawong,Y. C. Xin, S. Birudavolu, P. S.Wong, S. Huang, C. P. Hains, and D. L. Huffaker, “Quantum dot lasers based on a stacked and straincompensated active region grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett., vol. 86, pp. 193115-193117, 2005.
[30] U. Helin. K. Streubel, V. Oskarsson, E. Backlin, and A. Johanson,” High-brightness visible (660 nm) resonant-cavity light-emitting diodes”, IEEE Photon. Technol. Lett., vol. 10, pp. 1685–1687, 1998.
[31] R. Wirth, C. Karnutsch, S. Kugler, and K. Streubel, ”High-efficiency resonant-cavity LEDs emitting at 650 nm”, IEEE Photon. Technol. Lett., vol. 13, pp. 421–423, 2001.
[32] N. E. J. Hunt, E. F. Schubert, R. F. Kopf, D. L. Sivco, A. Y. Cho, and G. J. Zydzik, “Increased fiber communications bandwidth from a resonant cavity light emitting diode emitting at λ=940 nm”, Appl. Phys. Lett., vol. 63, pp. 2600-2602, 1993.
[33] D. Bimberg, M. Grunddmann and N. N. Ledentsov, in Quantum Dot Herterostuctures (John Wiley & Sons Ltd, 1999) p. 38.
[34] D.J. Bottomley, “The physical origin of InAs quantum dots on GaAs (001)”, Appl. Phys. Lett. vol. 72, pp. 783-785, 1998.
[35] T.E.Sale,”Cavity and reflector design for vertical cavity surface emitting laser diodes”, IEE Proc. J, vol. 142, pp 37-43, 1995.
[36] E. F. Schubert, In Light-Emitting Diodes, Chap. 10, Cambridge Univ. Press, United Kingdom, 2003.
[37] A. G. Thompson,” MOCVD technology for semiconductors’’, Mater. Lett. vol.30, pp 255-263, 1997
[38] J. P. Hirtz, M. Razeghi, M. Bonnet, and J. P. Duchemin, “Ga0.47In0.53As/InP and GaInAsP/InP double heterostructures grown by low-pressure Metal-organic vapour-phase epitaxy”, In T. P. Pearsall (ed.), GaInAsP Alloy Semiconductors, pp. 61-86, New York: John Wiley & Sons, 1982.
[39] G. Park, O. B. Shchekin, D.L. Huffaker and D. G. Deppe,” Low-threshold oxide-confined 1.3-μm quantum-dot laser”,IEEE Photonics Techno. Lett. vol.13, pp.230-232, 2000.
[40] O. B. Shchekin and D. G. Deppe,” Low-threshold high-T0 1.3-μ m InAs quantum-dot lasers due to p-type modulation doping of the active region”, IEEE Photonics Techno. Lett. vol.14, pp.1231-1233, 2002.
[41] K.Nishi, H. Saito, S.Sugou, J-S.Lee,”Light emission spectra of columnar-shaped self-assembled InGaAs/GaAs quantum-dot lasers: Effect of homogeneous broadening of the optical gain on lasing characteristics”, Appl. Phys.Lett, vol. 74, pp. 1561-1563,1999.
[42] N. -T. Yeh, T. -E. Nee and J.-I. Chyi,”Matrix dependence of strain-induced wavelength shift in self-assembled InAs quantum-dot heterostructures”, Appl. Phys. Lett. vol. 76 pp.1567-1569, 2000.
[43] A. Stintz, G. T. Liu, H. Li, L.F. Lester, and K.J. Malloy,” Low-threshold current density 1.3-μm InAs quantum-dot lasers with the dots-in-a-well (DWELL) structure”, IEEE Photonics Techno. Lett. vol.12, pp. 591-593, 2000.
[44] P. B. Joyce, T. J. Krzyzewski, G. R. Bell, T. S. Jones, S. Malik, D. Childs and R. Murry,” Effect of growth rate on the size, composition, and optical properties of InAs/GaAs quantum dots grown by molecular-beam epitaxy”, Phys. Rev. B, vol.62 pp.10891-10895,2000.
[45] Y. Nakata, K. Mukai, M, Sugawara, K. Ohtsubo, H. Ishikawa, and N. Yokoyama,” Molecular beam epitaxial growth of InAs self-assembled quantum dots with light-emission at 1.3μm”, J. Cryst. Growth, vol. 208, pp. 93-99, 2000.
[46] J. Tatebayashi, M. Nishioka and Y. Arakawa,” Over 1.5 µm light emission from InAs quantum dots embedded in InGaAs strain-reducing layer grown by metalorganic chemical vapor deposition”, Appl. Phys. Lett. vol. 78, pp. 3469-3471, 2001.
[47] D. Bimberg, M. Grunddmann and N. N. Ledentsov, in Quantum Dot Herterostuctures (John Wiley & Sons Ltd, 1999) p. 78.
[48] P. B. Joyce, T. J. Krzyzewski, G. R. Bell, T. S. Jones, E. C. Le Ru and R. Murry, Phys. Rev. B ,vol. 64, pp.235317-235323, 2001.
[49] E. F. Schubert, in Light-Emitting Diodes, Cambridge University Press, Cambridge, pp. 178-216, 2003.
[50] C. L. Tsai, C. W. Ho, C. Y. Huang, F. M. Lee, M. C. Wu, H. L. Wang, S. C. Ko, and W. J. Ho,” Fabrication and characterization of 650 nm resonant-cavity light-emitting diodes”, J. Vacuum Sci. Technol. B, vol.22, pp.2518-2522, 2004.
[51] J. W. Gray, D. Childs, S. Malik, P. Siverns, C. Roberts, P. N. Stavrinou, M. Whitehead, R. Murray, and G. Parry, ”Quantum dot resonant cavity light emitting diode operating near 1300 nm”, Electron. Lett. vol. 35, pp. 242-243, 1999.
[52] M. T. Todaro, V. Tasco, M. De Giorgi, L. Martiradonna, G. Rain□, M. De Vittorio, A. Passaseo, and R. Cingolani, “High-efficiency 1.3 µm InGaAs/GaAs quantum-dot microcavity light-emitting diodes grown by metalorganic chemical vapor deposition”, Appl. Phys. Lett. vol. 86, pp.151118-151120, 2005.
[53] J. Tatebayashi , Y. Arakawa, N. Hatori, H. Ebe, M. Sugawara, H. Sudo, and A. Kuramata, “InAs/GaAs self-assembled quantum-dot lasers grown by metalorganic chemical vapor deposition—Effects of postgrowth annealing on stacked InAs quantum dots”, Appl. Phys. Lett. vol. 85, pp. 1024-1026, 2004.
[54] Z. R. Wasilewski, S. Fafard, and J. P. McCaffrey, “Size and shape engineering of vertically stacked self-assembled quantum dots”, J. Cryst. Growth, vol. 201, pp.1131-1135, 1999.
[55] R. Sellin, F. Heinrichsdorff, C. H. Ribbat, M. Grundmann, U. W. Pohl, and D. Bimberg, “Surface flattening during MOCVD of thin GaAs layers covering InGaAs quantum dots”, J. Cryst. Growth, vol. 221, pp.581-585, 2000.
[56] D. L. Huffaker and D. G. Deppe, “Electroluminescence efficiency of 1.3 µm wavelength InGaAs/GaAs quantum dots”, Appl. Phys. Lett. vol.73, pp.520-522, 1998.
[57] G. Park, O.B. Shchekin, D.L. Huffaker and D.G. Deppe, “Low-Threshold Oxide-Confined 1.3 □m Quantum-Dot Laser”,IEEE Photon. Technol. Lett. vol. 13, pp. 230-232, 2000.
[58] K.F. Huang, T.P. Hsieh, N.T. Yeh, W.J. Ho, J.I. Chyi and M.C. Wu, “1.3μm InAs/GaAs quantum dots directly capped with GaAs grown by metal-organic chemical vapor deposition”, J. Cryst. Growth. vol. 264, pp. 128-133, 2004.
[59] T. Yang, J. Tatebayashi, S. Tsukamoto and Y. Arakawa, “Highly uniform self-assembled InAs/GaAs quantum dots emitting at 1.3μm by metalorganic chemical vapor deposition”, Physica E, vol. 26, pp.77-80, 2005.
[60] D. Bimberg, N. Kirstaedter, N.N. Ledentsov, Zh.I. Alferov, P.S. Kop’ev and V.M. Ustinov, IEEE J. Selected Topics in Quantum Electron. “InGaAs-GaAs quantum-dot lasers”, vol.3, pp. 196-205, 1997.
[61] M. Grundmann, N. N. Ledentsov, O. Stier, D. Bimberg, V.M. Ustinov, P.S. Kop’ev, and Zh.I. Alferov, “Excited states in self-organized InAs/GaAs quantum dots: Theory and experiment”, Appl. Phys. Lett. vol. 68, pp. 979-982, 1996
[62] I. Kegel, T.H. Metzger, A. Lorke, J. Peisl, J. Stangl, G. Bauer, J.M. Garc□a and P.M. Petroff,” Nanometer-Scale Resolution of Strain and Interdiffusion in Self-Assembled InAs/GaAs Quantum Dots”, Phys. Rev. Lett. vol. 85, pp. 1694-1697, 2000.
[63] R. Heitz, I. Mukhametzhanov, A. Madhukar, A. Hoffmann, and D. Bimberg,” Temperature dependent optical properties of self-organized InAs/GaAs quantum dots”, J. Electron. Mater. vol. 28, pp.520, 1999.
[64] S. Sanguinetti, M. Henini, M. Grassi Alessi, M. Capizzi, P. Frigeri and S. Franchi. “Carrier thermal escape and retrapping in self-assembled quantum dots”, physic. Rev. B, vol. 60, pp.8276-8283, 1999.
[65] Y. T. Dai, J. C. Fan, Y. F. Chen, R. M. Lin, S. C. Lee, and H. H. Lin,”Temperature dependence of photoluminescence spectra in InAs/GaAs quantum dot superlattices with large thicknesses” , J. Appl. Phys, vol. 82, pp. 4489-4492, 1997.
[66] H. L. Wang, D. Ning, S L. Feng, “Temperature dependence of the optical properties of InAs/GaAs self-organized quantum dots with bimodal size distribution”, J. Cryst. Growth. vol. 209, pp. 630-636, 2000.
[67] Y. C. Zhang, C. J. Huang, F. Q. Liu, B. Xu, D. Ding, W. H. Jiang, Y. F. Li, X. L. Ye, J. Wu, Y. H. Chen, and Z. G. Wang, “Temperature dependence of electron redistribution in modulation-doped InAs/GaAs quantum dots”, J. Cryst. Growth. vol. 219, pp. 199-204, 2000.
[68] Y. P. Varshni,“Temperature dependence of the energy gap in semiconductors”, Physica, vol. 34, pp. 149-154, 1967.
[69] Z.Y. Xu, Z. D. Lu, X. P. Yang, B. Z. Zheng, J. Z. Xu, W. K. Ge, Y. Wang, J. Wang, and L. L. Chang, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates”, physic. Rev. B, vol. 54, pp. 11528-11531, 1996.
[70] S. Sanguinetti, M. Henini, M. Grassi Alessi, M. Capizzi, P. Frigeri and S. Franchi. “Carrier thermal escape and retrapping in self-assembled quantum dots”, physic. Rev. B, vol. 60, pp. 8276-8283,1999.
[71] N. N. Ledentsov, M. V. Maximov, D. Bimberg, T. Maka, C. M. Sotomayor Torres, I. V. Kochnev, I. L. Krestnikov, V. M. Lantratov, N. A. Cherkashin, and Y. M. Musikhin,” 1.3μm luminescence and gain form defect-free InGaAs-GaAs quantum dots grown by metal-organic chemical vapour deposition”, Semicond. Sci. Technol. vol.15, pp. 604-607, 2000.
[72] I. N. Kaiander, R. L. Sellin, T. Kettler, N. N. Ledentsov, D. Bimberg, N.D. Zakhorov, and P. Werner,” 1.24 µm InGaAs/GaAs quantum dot laser grown by metalorganic chemical vapor deposition using tertiarybutylarsine”, Appl. Phys. Lett. vol. 84, pp. 2992-2994, 2004.