研究生: |
鄒瑾豪 Zou, Jin-Hao |
---|---|
論文名稱: |
植物磷酸轉運膜蛋白PHT1;1藉由機械化學協同作用促進無機磷的轉運 Mechanochemical coupling revealed in PHT1;1 facilitates inorganic phosphate transport |
指導教授: |
楊立威
Yang, Lee-Wei |
口試委員: |
潘榮隆
Pan, Rong-Long 劉姿吟 Liu, Tzu-Yin 蔡惠旭 Tsai, Hui-Hsu |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 35 |
中文關鍵詞: | 植物 、磷酸 、轉運膜蛋白 、機械化學 、無機磷 |
外文關鍵詞: | PHT1;1, PiPT, mechanochemistry |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
阿拉伯芥(Arabidopsis thaliana) PHT1;1是一種高親和力的磷酸轉運蛋白,屬於主要的易化因子超家族(major facilitator superfamily; MFS)。主要的易化因子超家族則是繼發性主動運輸蛋白家族(secondary active transporters)中最大的一類。同向轉運蛋白PHT1;1會將質子和無機磷酸鹽以同樣的方向從土壤中轉運到植物體內。因為磷酸對植物的生長非常重要,理解PHT1;1轉運磷酸的機制能讓我們有機會提高植物對磷酸的轉運速率,進而幫助植物的生長。但是到目前為止,PHT1;1的磷酸轉運機制還不是很清楚,PHT1;1的晶體結構也尚未解出。我們發現PiPT——印度梨型孢真菌(Piriformospora indica)磷酸轉運膜蛋白,和PHT1;1有高達38%的序列同一性(sequence identity),於是我們利用PiPT作為模版建立了PHT1;1的同源模擬結構 (homology modeling),並且我們用這個結構進行了一系列分子動力學模擬(molecular dynamics simulations; MD simulations)來研究PHT1;1的磷酸轉運機制。在這些模擬過程中,我們特別考慮了細胞膜兩邊質子濃度的差異,並且根據細胞膜兩邊不同的pH值來決定PHT1;1上帶電胺基酸的質子化狀態(protonation state)。我們發現Asp38和Asp308的質子化狀態對磷酸的釋放非常重要。在磷酸轉運過程中,兩個質子可以分別通過兩個水通道和H2PO4- 一同被轉運。這兩個質子會分別將Asp38 和 Asp308 質子化,稍後再釋放到水中。此處質子化及去質子化均與磷酸結合,釋放及其所造成的構型變化相關。去質子化的Asp308會讓H2PO4- 離開原本的結合位點,使得PHT1;1產生形變。H2PO4- 離開Asp308附近之後,會逐步和Gln85、His441、Asp144、 Ser153、Thr150 發生作用,被釋放到細胞內。在磷酸釋放的過程中,PHT1;1的結構變化可以透過適當的投影方法在低維度的空間中觀測到。這個低維度的空間是以朝細胞膜外打開(outward facing)的PHT1;1結構最主要的兩個或三個運動模式(normal modes)為軸來建構成的。而這些運動模式是由各向異性網路模型(anisotropic network model; ANM)計算得到。這種結構的變化揭示了磷酸轉運過程中的機械化學協同作用(mechanochemical coupling):磷酸與蛋白質的結合以及結構的變化導致了重要氨基酸質子化狀態改變之間的協同關係。除此之外,我們也發現在磷酸被釋放出PHT1;1的過程中,在Glu154 and Lys99 之間新形成的鹽橋可能會誘發PHT1;1形成朝細胞膜外打開的結構狀態。
The Arabidopsis thaliana PHT1;1 is a high-affinity phosphate transporter and belongs to the major facilitator superfamily (MFS), one of the largest groups of secondary active transporters. PHT1;1 as a symporter transports both phosphate and protons and plays an important role in phosphates uptake from soil and is thus vital for plant growth. Understanding the mechanism of phosphate transport by PHT1;1 paves a way for us to improve the efficiency of phosphate uptake in plants. However, the mechanism of PHT1;1 transport is currently still unknown. On the basis of the crystal structure of P. indica phosphate transporter (PiPT) that shares a similar sequence with PHT1;1 (38% sequence identity), we built the homology structural model of PHT1;1 and performed molecular dynamics (MD) simulations to study the transport mechanism. By carefully considering protonation states of ionizable residues according to proton gradient across the membrane in our MD simulations, we suggest that the protonation states of Asp38 and Asp308 play important roles in releasing phosphate. Through two water channels, two protons are transferred along with H2PO4- discharge-induced conformational changes and deprotonation of Asp38/Asp308. After leaving Asp308, the phosphate is escorted by Gln85, His441, Asp144, Ser153, and Thr150 toward its release into the cytosol. The conformational changes (states) during the phosphate release can be displayed in a plane or space spanned by the slowest 2 or 3 normal modes, revealing a mechanochemical coupling between phosphate binding/exit and conformational change-triggered (de)protonation of key residues. The formation of outward-facing-like structure could be triggered by a newly formed salt bridge between Glu154 and Lys99 during the phosphate release.
Best, R.B., Zhu, X., Shim, J., Lopes, P., Mittal, J., Feig, M., MacKerell, A.D.J. (2012) Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and sidechain chi1 and chi2 dihedral angles. J. Chem. Theor. Comput. 11, 3257–3273.
Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Cassarino, T.G., Bertoni, M., Bordoli, L., Schwede, T. (2014). SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 42, 252-258.
Cordell, D., Drangert, J.O., White, S. (2009). The story of phosphorus: global food security and food for thought. Glob. Environ. Chang. 19, 292–305.
Darden, T., York, D., Pedersen, L., (1993). Particle mesh Ewald: an N. log (N) method for Ewald sums in large systems. J. Chem. Phys. 98,10089-10092.
Dunlop, J., Phung, H.T., Meeking, R., and White, D.W.R. (1997). The kinetics associated with phosphate absorption by Arabidopsis and its regulation by phosphorus status. Aust. J. Plant Physiol. 24, 623–629.
Eastman, P., Friedrichs, M. S., Chodera, J. D., Radmer, R. J., Bruns, C. M., Ku, J. P., Beauchamp, K. A, Lane, T.J., Wang, L.P., Shukla, D., Tye, T., Houston, M., Stich, T., Klein, C., Shirts, M.R., Pande, V.S. (2013). OpenMM4: A reusable, extensible, hardware independent library for high performance molecular Simulation. J. Chem. Theor. Comput. 9, 461-469.
Eastman, P., Pande, V.S. (2010). OpenMM: A hardware-independent framework for molecular simulations. computing in science & engineering. Comput. Sci. Eng. 12, 34-39.
Feller SE, Zhang YH, Pastor RW, Brooks BR. (1995). Constant pressure molecular dynamics simulation the Langevin piston method. J. Chem. Phys. 103, 4613-4621.
Fontenot, E.B., Ditusa, S.F., Kato, N., Olivier, D.M., Dale, R., Lin, W.Y., Chiou, T.J., Macnaughtan, M.A., Smith, A.P. (2015). Increased phosphate transport of Arabidopsis thaliana Pht1;1 by site-directed mutagenesis of tyrosine 312 may be attributed to the disruption of homomeric interactions. Plant. Cell. Environ. 38, 2012–2022.
Forster, I.C., Hernando, N., Biber, J., Murer, H. (2013). Phosphate transporters of the SLC20 and SLC34 families. Mol. Aspects Med. 34, 386-395.
Friedrichs, M.S., Eastman, P., Vaidyanathan, V., Houston, M., LeGrand, S., Beberg, A.L., Ensign, D.L., Bruns, C.M., Pande, V.S. (2009). Accelerating molecular dynamic simulation on graphics processing units. J. Comp. Chem. 30, 864-872.
Frishman, D & Argos, P. (1995). Knowledge-based secondary structure assignment. Proteins, 23, 566-579.
Furihata, T., Suzuki, M., Sakurai, H. (1992). Kinetic characterization of two phosphate uptake systems with different affinities in suspension cultured Catharanthus roseus protoplants. Plant Cell Physiol. 33, 1151–1157.
Humphrey, W., Dalke, A., Schulten, K. (1996). VMD: visual molecular dynamics. J. Mol. Graph. 14, 33-38.
Jo, S., Kim, T., Iyer, V.G., Im, W. (2008). CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859-1865.
Jouhet, J., Marechal, E., Block, M.A. (2007). Glycerolipid transfer for the building of membranes in plant cells. Prog. Lipid Res. 46, 37–55.
Karthikeyan, A.S., Varadarajan, D.K., Mukatira, U.T., D’Urzo, M.P., Damsz, B., Raghothama, K.G. (2002). Regulated expression of Arabidopsis phosphate transporters. Plant Physiol. 130, 221–233.
Kučerka, N., Nieh, M.P, Katsaras, J. (2011). Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature. Biochim. Biophys. Acta. 1808, 2761-2771.
Lee, D.A., Chen, A., Schroeder, J.I. (2003). Ars1, an Arabidopsis mutant exhibiting increased tolerance to arsenate and increased phosphate uptake. Plant J. 35, 637–646.
Lefebvre, D.D., Duff, S.M., Fife, C.A., Julien-Inalsingh, C., Plaxton, W.C. (1990). Response to phosphate deprivation in Brassica nigra suspension cells: enhancement of intracellular, cell surface, and secreted phosphatase activities compared to increases in Pi-absorption rate. Plant Physiol. 93, 504–511.
Leggewie, G., Willmitzer, L., Riesmeier J.W. (1997). Two cDNAs from potato are able to complement a phosphate uptake-deficient yeast mutant: identification of phosphate transporters from higher plants. Plant Cell 9, 381–392.
MarvinSketch (version 6.2.2), calculation module developed by ChemAxon, http://www.chemaxon.com/products/marvin/marvinsketch/, 2014.
Misson, J., Thibaud, M.C., Bechtold, N., Raghothama, K., Nussaume, L. (2004). Transcriptional regulation and functional properties of Arabidopsis Pht1;4, a high affinity transporter contributing greatly to phosphate uptake in phosphate deprived plants. Plant Mol. Biol. 55, 727–741.
Mitsukawa, N., Okumura, S., Shirano, Y., Sato, S., Kato, T., Harashima, S., Shibata, D. (1997). Overexpression of an Arabidopsis thaliana high affinity phosphate transporter gene in tobacco cultured cells enhances cell growth under phosphate-limited conditions. Proc. Nat. Acad. Sci. USA 94, 7098–7102.
Moncelli, M. R., Becucci, L., and Guidelli, R. (1994) The intrinsic pKa values for phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine in monolayers deposited on mercury electrodes. Biophys. J. 66, 1969-1980.
Mudge, S.R., Rae, A.L., Diatloff, E., Smith, F.W. (2002). Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis. Plant J. 31, 341–353.
Nagarajan, V.K., Jain, A., Poling, M.D., Lewis, A.J., Raghothama, K.G., Smith, A.P. (2011). Arabidopsis Pht1;5 mobilizes phosphate between source and sink organs, and influences the interaction between phosphate homeostasis and ethyl- ene signaling. Plant Physiol. 156, 1149-1163.
Olsson, M.H., Sondergaard C.R., Rostkowski M., Jensen J.H. (2011). PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J. Chem. Theor. Comput. 7, 525-537.
Pedersen, B.P., Kumar, H., Waight, A.B., Risenmay, A.J., Roe-Zurz, Z., Chau, B.H, Stroud, R.M. (2013). Crystal structure of a eukaryotic phosphate transporter. Nature 496, 533–536.
Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L., Schulten, K. (2005). Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781-1802.
Poirier, Y., Bucher, M. (2002). Phosphate transport and homeostasis in Arabidopsis, Arabidopsis Book 1:e0024.
Preuss, C.P., Huang, C.Y., Tyerman S.D. (2011). Proton-coupled high-affinity phosphate transport revealed from heterologous characterization in Xenopus of barley-root plasma membrane transpoter, HvPHT1;1. Plant. Cell. Environ. 34, 681-689.
Raghothama, K.G. (1999). Phosphate acquisition. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 665–693.
Roberts E, Eargle J, Wright D, Luthey-Schulten Z (2006) MultiSeq: Unifying sequence and structure data for evolutionary analysis. BMC Bioinformatics 7, 382.
Rost, B. (1999). Twilight zone of protein sequence alignments Protein Engineering. 12, 85-94.
Sakano, K. (1990). Proton/phosphate stoichiometry in uptake of inorganic phosphate by cultured cells of Catharanthus roseus (L.) G. Don. Plant Physiol. 93, 479–483.
Schachtman, D.P., Reid, R.J., Ayling, S.M. (1998). Phosphorus uptake by plants: from soil to cell. Plant Physiol. 116, 447–453.
Shimogawara, K., Usuda, H. (1995). Uptake of inorganic phosphate by suspension-cultured tobacco cells: kinetics and regulation by Pi starvation. Plant Cell Physiol. 36, 341–351.
Shin, H., Shin, H.S., Dewbre, G.R., Harrison, M.J. (2004). Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J. 39, 629–642.
Smith, F.W., Cybinski, D.H., Rae, A.L. (1999). Regulation of expression of genes encoding phosphate transporters in barley roots. In G. Gissel-Nielsen, A. Jensen, eds, Plant Nutrition: Molecular Biology and Genetics. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 145–150.
Sondergaard, C.R., Mats H.O., Michal R., Jan H.J. (2011). Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pKa values. J. Chem. Theory Comput. 7, 2284-2295.
Ticconi, C.A., Delatorre, C.A., Abel, S. (2001). Attenuation of phosphate starvation responses by phosphite in Arabidopsis. Plant Physiol. 127, 963–972.
Tittarelli, A., Milla, L., Vargas, F., Morales, A., Neupert, C., Meisel, L.A., Salvo, G.H., Penaloza, E., Munoz, G., Corcuera, L.J., Silva, H. (2007). Isolation and comparative analysis of the wheat TaPT2 promoter: identification in silico of new putative regulatory motifs conserved between monocots and dicots. J. Exp. Bot. 58, 2573–2582.
Ullrich, C.I, Novacky, A.J. (1990). Extra- and intracellular pH and membrane potential changes induced by K+, Cl-, H2PO4-, and N3- uptake and fusicoccin in root hairs of Limnobium stoloniferum. Plant Physiol. 94, 1561–1567.
Ullrich-Eberius, C.I., Novacky, A., Fischer, E., Luttge, U. (1981). Relationship between energy-dependent phosphate uptake and the electrical membrane potential in Lemna gibba G1. Plant Physiol. 67, 797–801.
Ullrich-Eberius, C.I., Novacky, A., Van Bel, A.J.E. (1984). Phosphate uptake in Lemna gibba G1: energetics and kinetics. Planta 161, 46–52.
Vance, C.P., Uhde-Stone, C., Allan, D. (2003). Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol. 157, 423–447.
Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J. Darian, E., Guvench, O., Lopes, P., Vorobyov, I., MacKerell Jr, A.D. (2010). CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force field. J. Comput. Chem. 31, 671-690.
Varadarajan, D.K., Karthikeyan, A.S., Matilda, P.D., Raghothama, K.G. (2002). Phosphite, an analog of phosphate, suppresses the coordinated expression of genes under phosphate starvation. Plant Physiol. 129, 1232–1240.
Virkki, L.V., Murer, H., Forster, I.C. (2006). Voltage clamp fluorometric measurements on a type II Na+-coupled Pi cotransporter: shedding light on substrate binding order. J. Gen. Physiol. 127, 539–555.
Weast, R.C., (1983). CRC Handbook of Chemistry and Physics. 64th ed. Boca Raton, Florida: CRC pp. D-169.
Wirth, J., Chopin, F., Santoni, V., Viennois, G., Tillard, P., Krapp, A., Lejay, L., Daniel-Vedele, F., Gojon, A. (2007). Regulation of root nitrate uptake at the NRT2.1 protein level in Arabidopsis thaliana. J. Biol. Chem. 32, 23541–23552.
Yang, L.W., Eyal, E., Bahar, I., Kitao, A. (2009). Principal component analysis of native ensembles of biomolecular structures (PCA_NEST): insights into functional dynamics. Bioinformatics 25, 606–614.
Yu, W., He, X., Vanommeslaeghe, K., MacKerell, A.D. (2012). Extension of the CHARMM General Force Field to Sulfonyl-Containing Compounds and Its Utility in Biomolecular Simulations. J. Comput. Chem. 33, 2451-2468.
Wu, Z., Ren, H., McGrath, S.P., Wu, P., and Zhao, F.J. (2011). Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiol. 157, 498–508.