簡易檢索 / 詳目顯示

研究生: 王振樺
Wang, Jen-Hua
論文名稱: 在Hele-Shaw型微流道中探討流場和溫度場對生物膜形成的影響
Investigation of the Effects of Flow Field and Temperature Field on the Biofilm Formation in Microchannel
指導教授: 王翔郁
Wang, Hsiang-Yu
口試委員: 陳致真
Chen, Chi-Chen
陳紹文
Chen, Shao-Wen
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 154
中文關鍵詞: Hele-Shaw流動微粒子影像測速法溫度螢光感測技術金黃色葡萄球菌
外文關鍵詞: Hele-Shaw Flow, Micro-Particle Image Velocimetry, Temperature-Sensitive Paint, Staphylococcus aureus
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用微流體系統探討流場變化及溫度場變化對於Staphylococcus aureus的生長影響。研究中使用Hele-Shaw Flow在流道中心(y/W=0)產生速度線性變化,並使用ANSYS Fluent模擬流場及溫度場變化來選取實驗參數(雷諾數及加熱功率),選定實驗參數後再使用微粒子影像測速法(Micro-Particle Image Velocimetry, Micro-PIV)及溫度螢光感測技術(Temperature-Sensitive Paint, TSP)進行速度場及溫度場的量測,且與模擬結果進行驗證。利用雷諾數10的流速在微流道內可製造出0.88 Pa至3.76 Pa的剪應力區間,若同時使用0.3 W加熱功率可產生27.34˚C到41.98˚C的溫度區間。測量到的速度場以及溫度場與模擬的誤差皆在5%以下。將上述結果應用在Hele-Shaw型微流道內進行細菌培養,得知Staphylococcus aureus在室溫下承受剪應力影響生長時,在剪應力為1.4 Pa到1.6 Pa可以得到最高的平均生長率135%。在同時受到剪應力及溫度影響時,在剪應力為1.4 Pa到1.6 Pa及溫度區間為36.4˚C ~ 38.4˚C時細菌平均成長率為193%,可看出36.4˚C ~ 38.4˚C較室溫適合Staphylococcus aureus生長。
      為了在未來進行壁溫量測,本研究亦進行螢光分子Europium thenoyltrifluoroacetonate, EuTTA (Acros Organics, USA)的衰退測試,成功測得在120分鐘的實驗時間,衰退值僅為2.4%。


    In this research, we exploit the microchannel system to discuss the effect of variety of flow-field and of temperature-field on the growth of Staphylococcus aureus. The Hele-Shaw Flow used in this research in the center of flow-field causes the linear variety of velocity. And we also utilizes the simulated flow-field and the variety of temperature-field of ANSYS Fluent to decide the experimental parameters. Furthermore, the Micro-PIV and TSP are adopted right after the parameters are determine to measure the velocity and temperature field. In the meantime, the result of simulation verifies the result of experiment. The flow velocity of Reynold number 10 can produce the interval of shear stress of 0.88 Pa through 3.76 Pa. In addition of, 0.3 W heating power used on microchannel can produce the temperature interval of 27.34˚C through 41.92˚C. As the research shows, the error value among velocity, temperature and simulation is less than 5%. The aforementioned results which apply on Hele-Shaw microchannel to cultivate the bacteria show that under shear stress, 1.4 Pa through 1.6 Pa, the average highest growth rate of Staphylococcus aureus growing at room temperature reaches 135%. On the other hand, the growth rate of bacteria affected by shear stress, 1.4 Pa through 1.6 Pa, and temperature, 36.4˚C through 38.4˚C reaches 193%. As the result of this research, the temperature interval, 36.4˚C through 38.4˚C, is much available for Staphylococcus aureus growth. In the future, in order to measure the wall temperature that the decline of Europium thenoyltrifluoroacetonate, EuTTA (Acros Organics, USA) has been measured and successfully obtains the 2.4% of decline value in 120 hrs.

    目錄 摘要 I Abstract II 致謝 IV 目錄 VI 圖目錄 X 表目錄 XVII 第1章 緒論 18 1.1 前言 18 1.2 研究動機與方法 19 第2章 文獻回顧 21 2.1 血管內生物膜影響 21 2.1.1 Staphylococcus aureus受剪應力之影響 24 2.1.2 Staphylococcus aureus受溫度之影響 26 2.1 微流體系統應用於微生物研究 30 2.1.1 微流體系統應用於微生物培養 30 2.1.2 利用微流體系統研究流場對於微生物的影響 31 2.1.3 利用微流體系統研究溫度對於微生物的影響 33 2.2 流場測量 34 2.2.1 微粒子影像測速技術 34 2.2.2 應用微粒子影像測速技術於微流體系統 39 2.3 溫度量測 42 2.3.1 溫度螢光感測塗料 42 第3章 實驗方法與材料 52 3.1 微流道設計 52 3.1.1 流道製作前分析 54 3.2 微流道製作 54 3.2.1 微流道母模製程 54 3.2.2 高分子翻模製程 57 3.3 微流道流場量測 59 3.3.1 實驗架設 60 3.3.2 螢光粒子溶液 61 3.3.3 雷射與取像系統時序設定 61 3.3.4 取像系統相關深度計算 64 3.3.5 流場流速分析 64 3.3.6 流場剪應力計算 65 3.4 微流道溫度分析與控制 66 3.4.1 微型加熱器製作 67 3.4.2 螢光溫度感測技術 70 3.4.3 實驗步驟 73 3.4.4 流體溫度場量測 74 3.4.5 壁溫分析 78 3.5 誤差分析 80 3.5.1 速度誤差分析 80 3.5.2 液體溫度誤差分析 80 3.6 細菌培養 82 3.6.1 細菌及其染劑搭配 82 3.6.2 實驗架設及步驟 84 3.6.3 染劑測試 86 第4章 流場模擬 88 4.1.1 建立模型 89 4.1.2 建立網格 90 4.1.3 模擬設定 91 4.2 網格測試 93 4.3 入口長度測試 97 4.4 出口端長度檢驗 100 4.5 Hele-Shaw型流道流場模擬 104 4.5.1 流場雷諾數分析 104 4.5.2 雷諾數為10時流道速度模擬分析 108 4.5.3 雷諾數為10時流道溫度模擬分析 112 第5章 流場實驗分析 115 5.1 流道二維流場量測 115 5.1.1 流場速度分析 115 5.1.2 流場剪應力分析 118 5.2 流道二維流場溫度分析 119 5.2.1 流場液溫分析 119 5.2.2 EuTTA衰減測試 127 第6章 菌膜生長受剪應力及溫度的影響 130 6.1 細菌受剪切應力之生長影響 130 6.1.1 S.aureus受剪切應力之生長影響 130 6.1.2 S.epidermidis受剪切應力之生長影響 135 6.2 S.aureus受剪切應力與溫度之生長影響 141 第7章 結論與未來建議 148 7.1 結論 148 7.2 未來建議 149 參考文獻 151

    [1] R. G.Hart, J. W.Foster, M. F.Luther, andM. C.Kanter, “Original Contributions Stroke in Infective Endocarditis,” Stroke, 1986.
    [2] Taipei: Department of Health, “Taiwan Public Health Report,” no. March, 2010.
    [3] J.Gary D. Friedman.;Robert A.Hiatt.;Charles P. Quesenberry, “Case-control study of screening for prostatic cancer by digital rectal examinations,” vol. 335, pp. 1521–1526, 1985.
    [4] R. R.Isberg andP.Barnes, “Dancing with the host: Flow-dependent bacterial adhesion,” Cell, vol. 110, no. 1, pp. 1–4, 2002.
    [5] C. J.Rupp, C. J.Rupp, C. aFux, C. aFux, P.Stoodley, andP.Stoodley, “Viscoelasticity of Staphylococcus aureus Biofilms in Response to Fluid Shear Allows Resistance to Detachment and Facilitates Rolling Migration,” Society, vol. 71, no. 4, pp. 2175–2178, 2005.
    [6] R. A.Herbert andC. R.Bell, “Growth characteristics of an obligately psychrophilic Vibrio sp.,” Arch. Microbiol., vol. 113, no. 3, pp. 215–220, 1977.
    [7] G.Feller and etcoll., “Temperature dependence of growth, enzyme secretion and activityof psychrophilic Antarctic bacteria.,” Appl. Microbiol. Biotechnol., vol. 41(4), p. :477-479, 1994.
    [8] K.Adamberg, S.Kask, T. M.Laht, andT.Paalme, “The effect of temperature and pH on the growth of lactic acid bacteria: A pH-auxostat study,” Int. J. Food Microbiol., vol. 85, no. 1–2, pp. 171–183, 2003.
    [9] C.Bakermans andK. H.Nealson, “Relationship of critical temperature to macromolecular synthesis and growth yield in Psychrobacter cryopegella,” J. Bacteriol., vol. 186, no. 8, pp. 2340–2345, 2004.
    [10] J. P.Sutherland, A. J.Bayliss, andT. A.Roberts, “Predictive modelling of growth of Staphylococcus aureus: the effects of temperature, pH and sodium chloride,” Int. J. Food Microbiol., vol. 21, no. 3, pp. 217–236, 1994.
    [11] B.Li et al., “Gradient microfluidics enables rapid bacterial growth inhibition testing,” Anal. Chem., vol. 86, no. 6, pp. 3131–3137, 2014.
    [12] J. a.Wouters, F.Rombouts, W.deVos, O.Kuipers, andT.Abee, “Cold shock proteins and low-temperature response of strptococcus thermophilus CNRZ301,” Am. Soc. Microbiol., vol. 65, no. 10, pp. 4436–4442, 1999.
    [13] John J. Landolo, Z. J.Ordal, andL. D.Witter, “The effect of incubation temperature and controlled pH on the growth of staphylococcus aureus MF 31 at various concentrations of NaCl,” vol. 10, no. 9, pp. 808–811, 1964.
    [14] R. C. Magrin, J.Chirife, andJl. L. Parada, “A Study of Staphylococcus Aureus Growth in Model Systems and Processed Cheese,” vol. 48.
    [15] D. L.Scheusner, L. L.Hoon, andL. G.Harmon, “Effect of Temperature and pH on growth and Enterotoxin production by <i>Staphylococcus aureus,” Food Technol, vol. 36, no. 5, pp. 249–252, 1973.
    [16] M. C.Robach andC. L.Stateler, “Inhibition of Staphylococcus aureus by Potassium Sorbate in Combination with Sodium Chloride , Tertiary Butylhydroquinone , Butylated Hydroxanisole or Ethylenediamine Tetraacetic Acid,” vol. 43, no. 3, pp. 208–211, 1980.
    [17] G. C.Walker, L. G.Harmon, F.Science, andE.Lansing, “The Growth and Persistence of Staphylococcus aureus in Milk and Broth Substrates,” 1961.
    [18] W. J.Scott, “Water relations of staphylococcus aureus at 30°C,” Aust. J. Biol. Sci., vol. 6, no. 4, pp. 549–564, 1953.
    [19] M.SHAPERO, D. A.NELSON, andT. P.LABUZA, “ETHANOL INHIBITION OF Staphylococcus aureus AT LIMITED WATER ACTIVITY,” J. Food Sci., vol. 43, no. 5, pp. 1467–1469, 1978.
    [20] A.NISKANEN, “Release of Enterotoxin a and Thermonuclease From Growing and Non-Growing,” vol. 1, no. 1973, pp. 119–128, 1977.
    [21] D. A.Ratkowsky, J.Olley, T. A.McMeekin, andA.Ball, “Relationship between temperature and growth rate of bacterial cultures.,” J. Bacteriol., vol. 149, no. 1, pp. 1–5, 1982.
    [22] “中央氣象局全球資訊網.” .
    [23] B. H.Kim, R.Ramanan, D. H.Cho, H. M.Oh, andH. S.Kim, “Role of Rhizobium, a plant growth promoting bacterium, in enhancing algal biomass through mutualistic interaction,” Biomass and Bioenergy, vol. 69, pp. 95–105, 2014.
    [24] A. C.Tolonen, T.Cerisy, H.El-Sayyed, M.Boutard, M.Salanoubat, andG. M.Church, “Fungal lysis by a soil bacterium fermenting cellulose,” Environ. Microbiol., vol. 17, no. 8, pp. 2618–2627, 2015.
    [25] M. J.Kim andK. S.Breuer, “Use of Bacterial Carpets to Enhance Mixing in Microfluidic Systems,” J. Fluids Eng., vol. 129, no. 3, p. 319, 2007.
    [26] H.-H.Jeong, S.-G.Jeong, A.Park, S.-C.Jang, S. G.Hong, andC.-S.Lee, “Effect of temperature on biofilm formation by Antarctic marine bacteria in a microfluidic device.,” Anal. Biochem., vol. 446, pp. 90–95, 2014.
    [27] J. K.Min andK. S.Breuer, “Controlled mixing in microfluidic systems using bacterial chemotaxis,” Anal. Chem., vol. 79, no. 3, pp. 955–959, 2007.
    [28] A.Rochex, J. J.Godon, N.Bernet, andR.Escudié, “Role of shear stress on composition, diversity and dynamics of biofilm bacterial communities,” Water Res., vol. 42, no. 20, pp. 4915–4922, 2008.
    [29] A.Park, H.-H.Jeong, J.Lee, K.Kim, andC.-S.Lee, “Effect of shear stress on the formation of bacterial biofilm in a microfluidic channel,” BioChip J., vol. 5, no. 3, pp. 236–241, 2011.
    [30] D. P.Gaver andS. M.Kute, “A theoretical model study of the influence of fluid stresses on a cell adhering to a microchannel wall.,” Biophys. J., vol. 75, no. 2, pp. 721–33, 1998.
    [31] P.Stoodley, Z.Lewandowski, J. D.Boyle, andH. M.Lappin-Scott, “Structural deformation of bacterial biofilms caused by short-term fluctuations in fluid shear: An in situ investigation of biofilm rheology,” Biotechnol. Bioeng., vol. 65, no. 1, pp. 83–92, 1999.
    [32] Y.Sun andC.Huang, “國立清華大學動力機械學系 碩士論文 城垛型微流道內流體之速度與溫度場分析及生醫應用.”
    [33] R. J.Adrian, “Particle-image techniques for experimental fluid mechanics,” Annu. Rev. Fluid Mech., vol. 23, pp. 261–304, 1991.
    [34] C. D.Meinhart, a K.Prasad, andR. J.Adrian, “A parallel digital processor system for particle image velocimetry,” Meas. Sci. Technol., vol. 4, no. 5, pp. 619–626, 1999.
    [35] J. G.Santiago, S. T.Wereley, C. D.Meinhart, D. J.Beebe, andR. J.Adrian, “A particle image velocimetry system for microfluidics,” Exp. Fluids, vol. 25, no. 4, pp. 316–319, 1998.
    [36] C. D.Meinhart, S. T.Wereley, andJ. G.Santiago, “PIV measurements of a microchannel flow,” Exp. Fluids, vol. 27, no. 5, pp. 414–419, 1999.
    [37] R.Lima, S.Wada, andK.Tsubota, “Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel,” Meas. Sci. Technol., vol. 17, pp. 797–808, 2006.
    [38] J.Kim, Y.Jang, D.Byun, M.Kim, S. W.Nam, andS.Park, “Quantitative measurement of dynamic flow induced by Tetrahymena pyriformis (T. pyriformis) using micro-particle image velocimetry,” J. Vis., vol. 14, no. 4, pp. 361–370, 2011.
    [39] X.Zhang, H.Choi, A.Datta, andX.Li, “Design, fabrication and characterization of metal embedded thin film thermocouples with various film thicknesses and junction sizes,” J. Micromechanics Microengineering, vol. 16, no. 5, p. 900, 2006.
    [40] H. G.Park, D.Dabiri, andM.Gharib, “Digital particle image velocimetry/thermometry and application to the wake of a heated circular cylinder,” Exp. Fluids, vol. 30, no. 3, pp. 327–338, 2001.
    [41] H.Hu andM. M.Koochesfahani, “Molecular tagging velocimetry and thermometry and its application to the wake of a heated circular cylinder,” Meas. Sci. Technol., vol. 17, no. 6, pp. 1269–1281, 2006.
    [42] A.Omrane, P.Petersson, M.Aldén, andM. A.Linne, “Simultaneous 2D flow velocity and gas temperature measurements using thermographic phosphors,” Appl. Phys. B Lasers Opt., vol. 92, no. 1, pp. 99–102, 2008.
    [43] S.Grafsronningen andA.Jensen, “Simultaneous PIV/LIF measurements of a transitional buoyant plume above a horizontal cylinder,” Int. J. Heat Mass Transf., vol. 55, no. 15–16, pp. 4195–4206, 2012.
    [44] J.Vogt andP.Stephan, “Using microencapsulated fluorescent dyes for simultaneous measurement of temperature and velocity fields,” Meas. Sci. Technol., vol. 23, no. 10, 2012.
    [45] S.Funatani, N.Fujisawa, andH.Ikeda, “Simultaneous measurement of temperature and velocity using two-colour LIF combined with PIV with a colour CCD camera and its application to the turbulent buoyant plume,” Meas. Sci. Technol., vol. 15, no. 5, pp. 983–990, 2004.
    [46] S.Someya, S.Yoshida, Y.Li, andK.Okamoto, “Combined measurement of velocity and temperature distributions in oil based on the luminescent lifetimes of seeded particles,” Meas. Sci. Technol., vol. 20, no. 2, 2009.
    [47] P. T.Liou, “碩士論文 以溫度與速度同步量測技術探討突縮擴結構流場與熱 傳增益 The development of simultaneous temperature and velocity measurements and applications on heat transfer 系所別 : 動力機械工程學系.”
    [48] T. J.Praisner, D. R.Sabatino, andC. R.Smith, “Simultaneously combined liquid crystal surface heat transfer and PIV flow-field measurements,” Exp. Fluids, vol. 30, no. 1, pp. 1–10, 2001.
    [49] J. L.Kinsey, “Laser-Induced Fluorescence,” vol. 28, no. 9, pp. 349–72, 1977.
    [50] T.Liu, “Pressure- and Temperature-Sensitive Paints,” Encycl. Aerosp. Eng., pp. 1–11, 2011.
    [51] K. W.Lee et al., “Photophysical properties of tris(bipyridyl)ruthenium(ii) thin films and devices,” Phys. Chem. Chem. Phys., vol. 5, no. 12, p. 2706, 2003.
    [52] J.Crafton, N.Lachendro, M.Guille, J. P.Sullivan, andJ. D.Jordan, “Application of Temperature and Pressure Sensitive Paint to an Obliquely Impinging Jet,” AIAA Pap. no. AIAA-99-0387, no. c, pp. 1–13, 1999.
    [53] J. J.Lee, J. C.Dutton, andA. M.Jacobi, “Application of Temperature-Sensitive Paint for Surface Temperature Measurement in Heat Transfer Enhancement Applications,” J. Mech. Sci. Technol., vol. 21, pp. 1253–1262, 2007.
    [54] R.Samy, T.Glawdel, andC. L.Ren, “Method for microfluidic whole-chip temperature measurement using thin-film poly(dimethylsiloxane)/Rhodamine B,” Anal. Chem., vol. 80, no. 2, pp. 369–375, 2008.
    [55] C.-Y.Huang, C.-A.Li, H.-Y.Wang, andT.-M.Liou, “The application of temperature-sensitive paints for surface and fluid temperature measurements in both thermal developing and fully developed regions of a microchannel,” J. Micromechanics Microengineering, vol. 23, no. 3, p. 037001, 2013.
    [56] T.Liu, B. T.Campbell, S. P.Burns, andJ. P.Sullivan, “Temperature-and pressure-sensitive luminescent paints in aerodynamics,” 1997.
    [57] B.Campbell, T.Liu, andJ.Sullivan, “Temperature sensitive fluorescent paint systems,” 25th Plasmadynamics Lasers Conf., 1994.
    [58] B. W. Noel, B.R. Marshall, S.W. Allison, andM. R. Cates, “A Proposed Method for Remote Thermometry in Turbine Engines,” 1985.
    [59] S.Alaruri, D.McFarland, A.Brewington, M.Thomas, andN.Sallee, “Development of a fiber-optic probe for thermographic phosphor measurements in turbine engines,” Opt. Lasers Eng., vol. 22, no. 1, pp. 17–31, 1995.
    [60] B.G. McLachlan andJ.H. Bell, “Boundary Layer Transition Detection by Luminescence Imaging,” 1993.
    [61] L. N.Cattafesta, J. G.Moore, I.June, S.Diego, andJ. G.Moore, “Uncertainly estimates for lumines- cent temperaturesensitive paint intensity measurements,” 1995.
    [62] S.Usami, H. H.Chen, Y.Zhao, S.Chien, andR.Skalak, “Design and construction of a linear shear stress flow chamber,” Ann. Biomed. Eng., vol. 21, no. 1, pp. 77–83, 1993.
    [63] J.Lin, T.Liou, andC.Huang, “The investigation of flow field and heat transfer in 90° bend microchannels using micro paticle image velocimetry and temperature senstive paint,” 2014.
    [64] T.Scientific, “microarray-customer-communication-tw.” .
    [65] S.Taniselass, Z.Sauli, I.Mansor, V.Retnasamy, andP.Poopalan, “Entrance length observation for water flow in microchannels with surface irregularities,” Proc. - 2nd Int. Conf. Comput. Intell. Model. Simulation, CIMSim 2010, pp. 570–572, 2010.

    QR CODE