研究生: |
洪啟濠 Hong, Chi-Hao |
---|---|
論文名稱: |
短住病房策略對急診室壅塞改善研究-離散事件模擬 The Impact of Short-Stay Boarding Policy on ED Efficiency: A Discrete-Event Simulation Study |
指導教授: |
桑慧敏
Song, Whey-Ming |
口試委員: |
劉復華
彭文理 葉維彰 洪冠予 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 53 |
中文關鍵詞: | 急診室 、國際急診室壅塞指標 、離散事件模擬 、共同隨機亂數 |
外文關鍵詞: | EmergencyDepartment, NationalEmergencyDepartmentOvercrowdingScore, DiscreteEventSimulation, CommonRandomNumber |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究當中,我們評估新的住院分流策略-短住病房策略,對於急診室壅塞的影響。
決策變數為短住病床當中的床數。績效指標是 “國際急診室壅塞指標” (NEDOCS)。
使用的方法論為離散事件模擬 (DES)。模擬模型建立於台大醫院-雲林分院 3 個月的
歷史資料。本研究中呈現“短住病房”對於“國際急診室壅塞指標”的影響, 並且證實“短住病房”確實改善急診室壅塞。 模擬結果顯示 NEDOCS 壅塞的比率由原本的 77 % (尚未導入短住病房) 降至 57 % (導入 10 張短住病房)。 若導入 16 張短住病房, 壅塞的比率再降至 52。本研究使用的模擬方法較其他論文完整;輸入分析中,我們使用191種隨機變數描述急診室。模式建構中我們使用共同隨機亂數提升模擬的精確性。輸出分析中,我們利用動態時間校正 (DTW) 與自我相關移動平均法的殘差和 (ARMA)檢驗系統穩態。並且此論文評估可以落實的改善方案 (短住病房)。
In this study, we investigate the effect of a new boarding policy - short stay observation ward (SSOW), on the overcrowding efficiency in emergency department
(ED). The decision variables are no. of short stay beds for least acuity ED patients. The performance measurements used are national emergency department overcrowding score (NEDOCS). Discrete event simulation (DES) is used as a analysis tool to evaluate the strategy. Also, common random number (CRN) technique is applied to enhance the simulation precision. The DES model was based on a
census of 6 months’ patients who were treated in the ED of the National Taiwan University Hospital Yunlin Branch. Our results show that the new short-stay boarding significantly impacts the NEDOCS score and this analysis provides a quantification of the impact of boarding on emergency department patient crowding. Moreover, the proportion of the severer days (NEDOCS score≥ 100) would decrease from 77% to 57% in the best case when the SSOW increased from 0 to 10; and decrease from 57% to 52% in the best case when the SSOW increased from 10 to 16. Our study outperforms the previous work in that we provide thorough
DES study and a implementable strategy (SSOW).
[1] http://a.udn.com/focus/2016/10/18/25250/index.html
[2] http://iiqs.mohw.gov.tw/
[3] Weiss, S. J., Derlet, R., Arndahl, J., Ernst, A. A., Richards, J., Fernandez-Frankelton, M., Schwab, R., Stair, T. O., Vicellio, P., Levy, D., Brautigan, M.,Johnson, A., Nick, T. G. (2004) Estimating the Degree of Emergency Department Overcrowding in Academic Medical Centers: Results of the National ED
Overcrowding Study (NEDOCS). CLINICAL PRACTICE, 38
[4] http://www.nhi.gov.tw/Content List.aspx?n=D496152DDA8646D0&topn=D39E2B72B0BDFA15
[5] Abo-Hamad, W., Arisha, A. (2013) Simulation-based framework to improve patient experience in an emergency department. European Journal of Opera-tional Research, 224, 154-166
[6] Abbas, B. K. (2014) Simulation Models Of Emergency Department In Hospital.Journal of Engineering and Development, Vol. 18, No. 2, 1813-7822.
[7] Azadeh, A. , Ahvaz, M. P., Haghighii, S. M. and Keramati, A. (2016) Simulation optimization of an emergency department by modeling human errors.Simulation Modelling Practice and Theory, 67, 117-136.
[8] Kuo, Y.-H. (2014) Integrating simulation with simulated annealing for scheduling physicians in an understaffed emergency department. HKIE Transactions,21 (4): 253-261.
[9] Konrada, R. , DeSotto, K., Grocela, A., McAuley, P., Wang, J., Lyons, J.Bruin, M. (2013) Modeling the impact of changing patient flow processes in an emergency department: Insights from a computer simulation study. Operations Research for Health Care 66-74.
[10] Lin, C.-H., Kao, C.-Y. and Huang, C.-Y. (2015) Managing emergency department overcrowding via ambulance diversion: A discrete event simulation model. Journal of the Formosan Medical Association, 114, 64-71.
[11] Batarseh, O.G., Goldlust, E.J. (2013) SYSML FOR CONCEPTUAL MODELING AND SIMULATION FOR ANALYSIS: A CASE EXAMPLE OF A
HIGHLY GRANULAR MODEL OF AN EMERGENCY DEPARTMENT.
Proceedings of the 2013 Winter Simulation Conference
[12] Ghanes, K., Jouini, O., Jemai, Z., Wargon, M., Koole, G., Hellmann, R.,Thomas, V. (2014) A COMPREHENSIVE SIMULATION MODELING OF AN EMERGENCY DEPARTMENT: A CASE STUDY FOR SIMULATION OPTIMIZATION OF STAFFING LEVELS. Proceedings of the 2014 Winter
Simulation Conference
[13] Cocke, S., Guinn, D., MacBlane, E., Walshak, S., Willenbrock, N., White, K.P., Lobo, J. M. and Kang, H. (2016) UVA Emergency Department Patient Flow Simulation and Analysis. 2016 IEEE Systems and Information Engineering Design Conference
[14] Bair, A. E. , Song, W.-M. T. , Chen, Y.-C. and Morris, B. A. (2010) The Impact of Inpatient Boarding on ED Efficiency: A Discrete-Event SimulationStudy. Springer, 34, 919-929
[15] Gul, M. and Guneri, A. F. (2015) A comprehensive review of emergency department simulation applications for normal and disaster conditions. Computers & Industrial Engineering, 83, 327-344.
[16] Ashour, O. M. and Okudan Kremer, G. E. (2013) A simulation analysis of the impact of FAHP-MAUT triage algorithm on the Emergency Department performance measures. Expert Systems with Applications, 40, 177-187.
[17] Connelly, L. G. and Bair, A. E. (2004) Discrete Event Simulation of Emergency Department Activity: A Platform for System-level Operations Research. ACAD EMERG MED, Vol. 11, No.11, 1177-1185.
[18] Day, T. E., Al-Roubaie, A. R. and Goldlust, E. J. (2012) Decreased length of stay after addition of healthcare provider in emergency department triage: a comparison between compute simulated and real-world interventions. EmergMed J, 30, 134-138.
[19] Holm, L. B. and Dahl, F. A. (2009) SIMULATING THE EFFECT OF
PHYSICIAN TRIAGE IN THE EMERGENCY DEPARTMENT OF AKERSHUS UNIVERSITY HOSPITAL. Proceedings of the 2009 Winter Simulation Conference.
[20] Mahapatra, S., Koelling, C. P., Patvivatsiri, L., Fraticelli, B. (2003) PAIRISG EMERGESCY SEVERITY INDEX5-LEVIL TRIAGE DATA
WITH CO.MPUTER AlDED SYSTEM DESIGN TO IMPROVE EMERGENCY DEPARTMENT ACCESS AND THROUGAPUT. Proceedings of the 2003 Winter Simulation Conference.
[21] Mandahawi, N., Abdallah, A. and Al-Shihabi, S. (2010) Reducing waiting time at an emergency department using design for Six Sigma and discrete event simulation. Int. J. Six Sigma and Competitive Advantage, Vol. 6, Nos. 1/2, 91-104.
[22] Beck, E., Balasubramanian, H. and Henneman, P. L. (2009) RESOURCE MANAGEMENT AND PROCESS CHANGE IN A SIMPLIFIED MODEL
OF THE EMERGENCY DEPARTMENT. Proceedings of the 2009 Winter
Simulation Conference, 1887-1895.
[23] Chockalingam, A., Jayakumar, K. and Lawley, M. A. (2010) A STOCHASTIC CONTROL APPROACH TO AVOIDING EMERGENCY DEPARTMENT
OVERCROWDING. Proceedings of the 2010 Winter Simulation Conference, 2399-2411.
[24] Kuo, Y.-H., Leung, J. M.Y. and Graham, C. A. (2012) SIMULATION WITH DATA SCARCITY: DEVELOPING A SIMULATION MODEL OF A HOSPITAL EMERGENCY DEPARTMENT. Proceedings of the 2012 Winter Sim-
ulation Conference.
[25] Rico, F., Salari, E. and Centeno, G. (2007) EMERGENCY DEPART-
MENTS NURSE ALLOCATION TO FACE A PANDEMIC INFLUENZA
OUTBREAK Proceedings of the 2007 Winter Simulation Conference, 1292-1298.
[26] Weng, S.-J., Cheng, B.-H., Kwong, S.-T., Wang, L.-M. and Chang, C.-Y. (2011) SIMULATION OPTIMIZATION FOR EMERGENCY DEPART-
MENT RESOURCES ALLOCATION. Proceedings of the 2011 Winter Simu-
lation Conference, 1231-1238.
[27] Kolb, E. M. W. , Lee, T. and Peck, J. (2017) EFFECT OF COUPLING BETWEEN EMERGENCY DEPARTMENT AND INPATIENT UNIT ON
THE OVERCROWDING IN EMERGENCY DEPARTMENT. Proceedings of
the 2007 Winter Simulation Conference, 1586-1593.