簡易檢索 / 詳目顯示

研究生: 柯宗憲
Tsung-Shine Ko
論文名稱: 金奈米粒子光學特性及成長奈米材料上之應用研究
Study of Gold Nanoparticles on Optical Characters and Applications for Nanomaterial Growth
指導教授: 朱鐵吉
Tieh-Chi Chu
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 118
中文關鍵詞: 金奈米粒子奈米材料光學特性表面電漿共振鍺量子點
外文關鍵詞: gold nanoparticles, nanomaterials, optical characters, surface plasma resonance, germanium quantum dots
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用橢圓測厚儀量測金奈米粒子的橢圓參數TanΨ、Cos△,先由掃描式電子顯微鏡及X光繞射儀來量測金奈米粒子厚度,再利用光學模擬軟體計算出金奈米粒子在300nm到800nm的折射係數以及消光係數,以計算出複數折射率的型式,N= n-ik。並利用此結果反推得其各個浸泡時間所得的填充率及厚度,佐證SEM及XRR的結果。
    利用所得的金奈米粒子光學參數,以光學薄膜理論可模擬出在632.8 nm波長時各種金奈米粒子增強表面電漿共振結構的現象,找出利用金奈米粒子增強時金膜的適合厚度;我們也模擬出用二氧化矽保護金膜及銀膜的可行性,以及在二氧化矽層以自組裝的方式接上金奈米粒子,探討其對表面電漿共振圖譜的影響。
    製備高密度量子點於非晶質絕緣層為奈米技術的挑戰之一。本實驗是用利用高密度感應耦合電漿化學氣相沉積法,以金奈米粒子為催化劑,於400℃、500W,0.01Pa工作壓力條件下成長高密度鍺量子點於氧化矽基板上。經由掃描式電子顯微鏡觀察表面型態,低掠射角X光繞射鑑定結構,可得到結晶性良好,密度為1.46×1011/cm2的多晶鍺量子點,且密度與尺寸受金奈米粒子所影響。若將成長的時間延長,將可製備出鍺的多孔性薄膜,並在本論文內探討其成長機制。


    Optical thin films of nanoscale particles have recently received much attention since its special optical characteristics can dramatically increase sensitivity of surface plasmon-based sensors. In order to well control assembly process, understanding optical properties of nanoparticles films and accurately predicting the behaviors of optical devices, correct optical constants are necessaries. We added gold nanoparticles before and after measuring the spectroscopic ellipsometric parameters (TanΨ, CosΔ) to calculate the optical constants, thickness and porosity, and measured the film thickness by grazing incidence x-ray reflectivity (XRR) and cross-section SEM. Finally we use the optical constants of gold nanoparticles to simulate and get the optimized thickness of gold film for SPR measurement.
    We report the fabrication of germanium quantum dots and porous Ge film on silicon oxide and their growth mechanism. We deposited germanium quantum dots by inductively coupled plasma chemical vapor deposition at 400 °C. Gold nanoparticles, attached to silicon oxide through a self–assembled monolayer, were adopted as catalysts to allow access to a vapor–liquid–solid process. The density of polycrystalline germanium dots is 1.46 x 1011/cm2, which is consistent with the density of the gold nanoparticles. The mechanism by which the undesirable gold catalysts are removed during the germanium dot and porous Ge film growth process have been elucidated. This technique provides a low-temperature process for the fabrication of devices consisting of germanium quantum dots on an insulator surface.

    摘要……………………………………………………………………...II 謝誌……………………………………………………………………..IV 總目錄…………………………………………………………………...V 表目錄…………………………………………………………………. IX 圖目錄……………………………………………………………….…..X 第一章 緒論…………………………………………………………......1 1.1 奈米科技簡介…………………………………………………….....1 1.2橢圓測厚儀量測金奈米粒子光學特性的研究…………….……….2 1.3自組裝金奈米粒子增強表面電漿共振現象研究……………….….3 1.4金奈米粒子輔助高密度感應耦合電漿化學氣相沉積法成長鍺量 子點及鍺的多孔性薄膜…………………………………………..…4 1.5 論文架構…………………………………………………………….6 第二章 文獻回顧………………………………………………………..8 2.1 奈米粒子的特性與製備…………………………………………….8 2.1.1 奈米粒子簡介…………………………………………………..8 2.1.2 奈米粒子自組裝技術…………………………………………..8 2.1.3 奈米粒子的製備………………………………………………..9 2.1.4 奈米粒子的應用………………………………………………..9 2.2 橢圓測厚儀原理及分析技術…………………………………...…10 2.2.1 偏振光的型態與表示法………………………………………10 2.2.2 Stokes Parameters 和Mueller Matrix………………………….13 2.2.3 橢圓特性參數Ψ和△的定義...……………………………….14 2.3 橢圓參數的處理及分析…………………………………………...16 2.3.1 直接計算………………………………………………………17 2.3.2 數值回歸分析方法……………………………………………19 2.3.3 優化函數………………………………………………………20 2.3.4 回歸演算法……………………………………………………20 2.3.5 合成方法………………………………………………………21 2.3.6 適配度指數……………………………………………………22 2.3.7 系統誤差及隨機誤差…………………………………………22 2.4 表面電漿共振原理………………………………………………...22 2.5 化學氣相沉積原理簡介…………………………………………...24 2.5.1薄膜沉積原理………………………………………………….24 2.5.2 化學沉積反應機制……………………………………………27 2.5.3 沉積速率………………………………………………………28 2.5.4 反應器腔體傳輸現象…………………………………………29 第三章 橢圓測厚儀量測金奈米粒子光學特性………..…………..…32 3.1 實驗藥品與設備…………………………………………………...32 3.2 實驗步驟…………………………………………………………...35 3.3 實驗結果與討論…………………………………………………...38 3.3.1 製備出的金奈米粒子UV圖譜分析及型態………………….38 3.3.2 浸泡金奈米粒子的時間對其在矽基材上的表面分佈型態…40 3.3.3 利用XRD及SEM量測金奈米粒子厚度……………………41 3.3.4 金奈米粒子的橢圓參數Ψ、△及折射率n、消光係數k的 量測……………………………………………………………42 3.3.5 計算金奈米粒子的等效厚度及表面分佈率…………………46 第四章 自組裝金奈米粒子增強表面電漿共振現象的研究………....59 4.1 實驗藥品與儀器設備…………………………………………...…59 4.2 模擬與實驗步驟…………………………………………………...61 4.3 實驗結果與討論…………………………………………………...64 4.3.1 金屬膜層產生表面電漿共振的最佳厚度模擬分析…………64 4.3.2 橢圓測厚儀量測金膜及利用金奈米粒子增強的表面電漿共 振現象…………………………………………………………68 4.3.3 金奈米粒子的表面分佈影響…………………………………71 4.3.4 模擬二氧化矽層保護金膜時對表面電漿共振現象的影響…72 第五章 金奈米粒子輔助高密度感應耦合電漿化學氣相沉積法成長 鍺量子點及鍺的多孔性薄膜………………..………………..87 5.1 實驗藥品與設備…………………………………………………...87 5.2 實驗步驟…………………………………………………………...91 5.3 實驗結果與討論…………………………………………………...93 5.3.1鍺量子點的成長機制、表面型態及金奈米粒子分佈對其成 長結果的影響…………………………………………………93 5.3.2 鍺量子點的表面結構及組成分析……………………………94 5.3.3 ICPCVD製程參數對鍺量子點成長的影響及其機制探討…..95 5.3.4 鍺的多孔性薄膜成長機制、表面型態………………………97 第六章 結論………………………………………………………….112 6.1 實驗結論…………………………………………………………112 6.2 未來展望…………………………………………………………114 參考文獻………………………………………………………………116

    參考文獻
    1. T. Hyeon, S. S. Lee, J. Park, Y. Chung, H. B. Na, J. Am. Chem. Soc.2001, 123, 12798.
    2. Y. Zhang, Nathan W. Franklin, Robert J. Chen, Hongjie Dai, Chem. Phys. Lett.2000, 331, 35.
    3. D. G. Carlson, A. Segmuller, Phys. Rev. Lett.1971, Vol.27, pp.195.
    4. A. N. Shipway, E. Katz, I. Willner, ChemPhysChem 2000, 1, 18.
    5. D. Bethell, M. Brust, D. J. Schiffirin, C. Kiely, J. Electroanal. Chem. 1996, 409, 137.
    6. S. M. Sze, VLSI Technology, 2d ed., McGraw-Hill Companies, Inc., New York, 1988.
    7. C. A. Mirkin, Inorg. Chem.2000, 39, 2258.
    8. S. Chang, C. Shih, C. Chen, W. Lai, C.R. Wang, Langmuir 1999, 15, 701.
    9. G. Harsanyi, Sensors in Biomedical Applications, Pennsylvania: Technomic Publishing Co., Inc., 2000.
    10. J. N. Roe, Pharm. Res. 1992, 9, 835.
    11. L. A. Lyon, M. D. Musick, M. J. Natan. Anal. Chem.1998, 70, 5177.
    12. L. A. Lyon, D. J. Pena, M. J. Natan, J. Phys. Chem. B 1999, 103, 5826.
    13. L. A. Lyon, M. D. Musick, P. C. Smith, B. D. Reiss, D. J. Pena, M. J. Natian, Sens. Actuator B-Chem.1999, 54, 188.
    14. J. S. James, E. Robert, C. Robert, C. A. Mirkin, J. Am. Chem. Soc.1998, 122, 1959.
    15. R. L. Rich, D. G. Myszka, Curr. Opin. Biotechnol.2000, Vol.11, pp.54.
    16. J. Homola, S. S. Yee, G. Gauglitz, Sens. Actuator B-Chem.1999, 54, 3.
    17. L. A. Lyon, W. D. Holliway, M. J. Natan, Rev. Sci. Instrum.1999, 70, 2076.
    18. P. T. Leung, D. Pollardknight, G. P. Malan, M. f. Finlan, Sens. Actuator B-Chem.1994, 22, 175.
    19. D. K Kambhampati, T. A. M. Jakob, J. W. Robertson, M. Cai, J. E. Pemberton, W. Knol, Langmuir 2001, 17, 1169.
    20. X. M. Zhu, P. H. Lin, P. Ao, L. B. Sorensen, Sensors and Actuators B 2002, 84, 106.
    21. T. S. Yeoh, C. P. Liu, R. B. Swint, A. Gaur, V. C. Elarde, J. J. Coleman, IEEE Circuits Device 2003, 19, 26.
    22. A. Barski, M. Derivaz, J. L. Rouviere, D. Buttard, Appl. Phys. Lett. 2000, 77, 3541.
    23. Y. Maeda, N. Tsukamoto, Y. Yazawa, Y. Kanemitsu, Y. Masumoto, Appl. Phys. Lett. 1991, 59, 3168.
    24. S. Fan, M. Chapline, N. Franklin, T. Tombler, A. Cassell, H. Dai, Science 1999, 283, 512.
    25. A. M. Morales, C. M. Lieber, Science 1998, 279, 208.
    26. Y. N. xia, P. D. Yang, Y. g. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, Y. Q. Yan, Adv. Mat. 2003, 15, 353.
    27. K. Akamatsu, S. Deki, J. Mater. Chem.1998, 8, 637.
    28. 陶雨台 著,”淺介自組裝分子薄膜”,科學月刊 2002,第三十三卷,第十期,860頁。
    29. C. Sangregorio, M. Galeotti, U. Bardi, P. Baglioni, Langmuir 1996, 12, 5800.
    30. M. T. Reetz, W. Helbig, J. Am. Chem. Soc. 1994, 116, 401.
    31. A. Henglein, J.Phys. Chem. 1993, 97, 5457.
    32. M.Azzam, N. M. Bashara, Ellipsometry and Polarized Light, North-Holland, Amsterdam, 1980.
    33. Samuel S. So, Surface Science 1976, 56, 97.
    34. O. S. Heavens, Optical Properties of Thin Solid Films, Dover Publications, New York, 1965.
    35. G. E. Jellison, Appl. Opt.1991, 30, 3354.
    36. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes, Cambridge University Press, Cambridge, 1988.
    37. C. S. Mayo, R. B. Hallock, Journal of Immunological Methods 1989, 120, 105.
    38. P. B. Daniels, J. K. Deacon, M. J. Eddowes and D. G. Pedley, Sensors and Actuators 1988, 15, 11.
    39. 莊達人 著,VLSI製造技術,五版,頁217-231,高立圖書有限公司,台北,2002。
    40. C. Demaille, M. Brust, M. Tsionsky, A. J. Bard, Anal. Chem. 1997, 69, 2323.
    41. H. L. Zhang, S. D. Evans, J. R. Henderson, Adv. Mater. 2003, 15, 531.
    42. 蘇青森 著,儀器學,初版,頁366-375,五南圖書出版公司,2002。
    43. M. Brust, D. Bethell, C. J. Kiely, D. J. Schiffrin, Langmuir 1998, 14. 5425.
    44. T. Baum, D. Bethell, M. Brust, D. J. Schiffrin, Langmuir 1999, 15, 866.
    45. F. Auer, M. Scotti, A. Ulman, R. Jordan, B. Sellergren, J. Garno, G. Y. Liu, Langmuir 2000, 16, 7554.
    46. D. Aspnes, J. Theeten, F. Hottier, Phys. Rev. B 1979, 20, 3292.
    47. D. Landheer, J. E. Hulse, T. Quance, Thin Solid Films 1997, 293, 52.
    48. F. Wooten, Optical Properties of Solids, Academic Press, London 1972.
    49. E. Hutter, S. Cha, J-F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, J. Phys. Chem. B 2001, 105, 8.
    50. R. W. Wood, Phil. Magm.1902, 4, 396.
    51. H. Raether, Surface Plasmons on Smooth and Rough Surface and on Gratings, Berlin:Springer-Verlag, 1988.
    52. E. Kretschmann, H. Raether, Z. Naturforsch. 1968, 23a, 2135.
    53. de Bruijin, H. E.; Altenburg, B. S. F.; Kooyman, R. P. H.; Greve, G., J.Opt. Commun. 1991, pp.425.
    54. E. Hutter, J. H. Fendler, D. Roy, J. Appl. Phys. 2001, Vol.90, pp.1977.
    55. D. Roy, Appl. Spectrosc. 2001, 55, 1046.
    56. H. Okamoto, T. B. Massalski, Binary Alloy Phase Diagrams, Vol.1, 2nd ed., ASM International, Materials Park, OH, 1990.
    57. D. Wang, H. Dai, Angew. Chem. Int. Ed.2002, 123, 3165.
    58. Y. Wu, P. Yang, J. Am. Chem. Soc. 2001, 123, 3165.
    59. S. V. Nguyen, IBM J. Res. Develop. 1999, 43, 109.
    60. N. Wang, Y. H. Tang, N. Wang, C. S. Lee, I. Bello, S. T. Lee, Phys. Rev. B 1998, 58, R16024.
    61. Y. F. Zhang, Y. H. Tang, N. Wang, C. S. Lee, I. Bello, S. T. Lee, Phys. Rev. B 2000, 61, 4518.
    62. R. Q. Zhang, Y. Lifshitz, S. T. Lee, Adv. Mater. 2003, 15, 635.
    63. V. I. Merkulov, M. A. Guillorn, D. H. Lowndes, M. L. Simpson, Appl.Phys. Lett. 2001, 79, 1178.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE