研究生: |
柯宗憲 Tsung-Shine Ko |
---|---|
論文名稱: |
金奈米粒子光學特性及成長奈米材料上之應用研究 Study of Gold Nanoparticles on Optical Characters and Applications for Nanomaterial Growth |
指導教授: |
朱鐵吉
Tieh-Chi Chu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 118 |
中文關鍵詞: | 金奈米粒子 、奈米材料 、光學特性 、表面電漿共振 、鍺量子點 |
外文關鍵詞: | gold nanoparticles, nanomaterials, optical characters, surface plasma resonance, germanium quantum dots |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用橢圓測厚儀量測金奈米粒子的橢圓參數TanΨ、Cos△,先由掃描式電子顯微鏡及X光繞射儀來量測金奈米粒子厚度,再利用光學模擬軟體計算出金奈米粒子在300nm到800nm的折射係數以及消光係數,以計算出複數折射率的型式,N= n-ik。並利用此結果反推得其各個浸泡時間所得的填充率及厚度,佐證SEM及XRR的結果。
利用所得的金奈米粒子光學參數,以光學薄膜理論可模擬出在632.8 nm波長時各種金奈米粒子增強表面電漿共振結構的現象,找出利用金奈米粒子增強時金膜的適合厚度;我們也模擬出用二氧化矽保護金膜及銀膜的可行性,以及在二氧化矽層以自組裝的方式接上金奈米粒子,探討其對表面電漿共振圖譜的影響。
製備高密度量子點於非晶質絕緣層為奈米技術的挑戰之一。本實驗是用利用高密度感應耦合電漿化學氣相沉積法,以金奈米粒子為催化劑,於400℃、500W,0.01Pa工作壓力條件下成長高密度鍺量子點於氧化矽基板上。經由掃描式電子顯微鏡觀察表面型態,低掠射角X光繞射鑑定結構,可得到結晶性良好,密度為1.46×1011/cm2的多晶鍺量子點,且密度與尺寸受金奈米粒子所影響。若將成長的時間延長,將可製備出鍺的多孔性薄膜,並在本論文內探討其成長機制。
Optical thin films of nanoscale particles have recently received much attention since its special optical characteristics can dramatically increase sensitivity of surface plasmon-based sensors. In order to well control assembly process, understanding optical properties of nanoparticles films and accurately predicting the behaviors of optical devices, correct optical constants are necessaries. We added gold nanoparticles before and after measuring the spectroscopic ellipsometric parameters (TanΨ, CosΔ) to calculate the optical constants, thickness and porosity, and measured the film thickness by grazing incidence x-ray reflectivity (XRR) and cross-section SEM. Finally we use the optical constants of gold nanoparticles to simulate and get the optimized thickness of gold film for SPR measurement.
We report the fabrication of germanium quantum dots and porous Ge film on silicon oxide and their growth mechanism. We deposited germanium quantum dots by inductively coupled plasma chemical vapor deposition at 400 °C. Gold nanoparticles, attached to silicon oxide through a self–assembled monolayer, were adopted as catalysts to allow access to a vapor–liquid–solid process. The density of polycrystalline germanium dots is 1.46 x 1011/cm2, which is consistent with the density of the gold nanoparticles. The mechanism by which the undesirable gold catalysts are removed during the germanium dot and porous Ge film growth process have been elucidated. This technique provides a low-temperature process for the fabrication of devices consisting of germanium quantum dots on an insulator surface.
參考文獻
1. T. Hyeon, S. S. Lee, J. Park, Y. Chung, H. B. Na, J. Am. Chem. Soc.2001, 123, 12798.
2. Y. Zhang, Nathan W. Franklin, Robert J. Chen, Hongjie Dai, Chem. Phys. Lett.2000, 331, 35.
3. D. G. Carlson, A. Segmuller, Phys. Rev. Lett.1971, Vol.27, pp.195.
4. A. N. Shipway, E. Katz, I. Willner, ChemPhysChem 2000, 1, 18.
5. D. Bethell, M. Brust, D. J. Schiffirin, C. Kiely, J. Electroanal. Chem. 1996, 409, 137.
6. S. M. Sze, VLSI Technology, 2d ed., McGraw-Hill Companies, Inc., New York, 1988.
7. C. A. Mirkin, Inorg. Chem.2000, 39, 2258.
8. S. Chang, C. Shih, C. Chen, W. Lai, C.R. Wang, Langmuir 1999, 15, 701.
9. G. Harsanyi, Sensors in Biomedical Applications, Pennsylvania: Technomic Publishing Co., Inc., 2000.
10. J. N. Roe, Pharm. Res. 1992, 9, 835.
11. L. A. Lyon, M. D. Musick, M. J. Natan. Anal. Chem.1998, 70, 5177.
12. L. A. Lyon, D. J. Pena, M. J. Natan, J. Phys. Chem. B 1999, 103, 5826.
13. L. A. Lyon, M. D. Musick, P. C. Smith, B. D. Reiss, D. J. Pena, M. J. Natian, Sens. Actuator B-Chem.1999, 54, 188.
14. J. S. James, E. Robert, C. Robert, C. A. Mirkin, J. Am. Chem. Soc.1998, 122, 1959.
15. R. L. Rich, D. G. Myszka, Curr. Opin. Biotechnol.2000, Vol.11, pp.54.
16. J. Homola, S. S. Yee, G. Gauglitz, Sens. Actuator B-Chem.1999, 54, 3.
17. L. A. Lyon, W. D. Holliway, M. J. Natan, Rev. Sci. Instrum.1999, 70, 2076.
18. P. T. Leung, D. Pollardknight, G. P. Malan, M. f. Finlan, Sens. Actuator B-Chem.1994, 22, 175.
19. D. K Kambhampati, T. A. M. Jakob, J. W. Robertson, M. Cai, J. E. Pemberton, W. Knol, Langmuir 2001, 17, 1169.
20. X. M. Zhu, P. H. Lin, P. Ao, L. B. Sorensen, Sensors and Actuators B 2002, 84, 106.
21. T. S. Yeoh, C. P. Liu, R. B. Swint, A. Gaur, V. C. Elarde, J. J. Coleman, IEEE Circuits Device 2003, 19, 26.
22. A. Barski, M. Derivaz, J. L. Rouviere, D. Buttard, Appl. Phys. Lett. 2000, 77, 3541.
23. Y. Maeda, N. Tsukamoto, Y. Yazawa, Y. Kanemitsu, Y. Masumoto, Appl. Phys. Lett. 1991, 59, 3168.
24. S. Fan, M. Chapline, N. Franklin, T. Tombler, A. Cassell, H. Dai, Science 1999, 283, 512.
25. A. M. Morales, C. M. Lieber, Science 1998, 279, 208.
26. Y. N. xia, P. D. Yang, Y. g. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, Y. Q. Yan, Adv. Mat. 2003, 15, 353.
27. K. Akamatsu, S. Deki, J. Mater. Chem.1998, 8, 637.
28. 陶雨台 著,”淺介自組裝分子薄膜”,科學月刊 2002,第三十三卷,第十期,860頁。
29. C. Sangregorio, M. Galeotti, U. Bardi, P. Baglioni, Langmuir 1996, 12, 5800.
30. M. T. Reetz, W. Helbig, J. Am. Chem. Soc. 1994, 116, 401.
31. A. Henglein, J.Phys. Chem. 1993, 97, 5457.
32. M.Azzam, N. M. Bashara, Ellipsometry and Polarized Light, North-Holland, Amsterdam, 1980.
33. Samuel S. So, Surface Science 1976, 56, 97.
34. O. S. Heavens, Optical Properties of Thin Solid Films, Dover Publications, New York, 1965.
35. G. E. Jellison, Appl. Opt.1991, 30, 3354.
36. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes, Cambridge University Press, Cambridge, 1988.
37. C. S. Mayo, R. B. Hallock, Journal of Immunological Methods 1989, 120, 105.
38. P. B. Daniels, J. K. Deacon, M. J. Eddowes and D. G. Pedley, Sensors and Actuators 1988, 15, 11.
39. 莊達人 著,VLSI製造技術,五版,頁217-231,高立圖書有限公司,台北,2002。
40. C. Demaille, M. Brust, M. Tsionsky, A. J. Bard, Anal. Chem. 1997, 69, 2323.
41. H. L. Zhang, S. D. Evans, J. R. Henderson, Adv. Mater. 2003, 15, 531.
42. 蘇青森 著,儀器學,初版,頁366-375,五南圖書出版公司,2002。
43. M. Brust, D. Bethell, C. J. Kiely, D. J. Schiffrin, Langmuir 1998, 14. 5425.
44. T. Baum, D. Bethell, M. Brust, D. J. Schiffrin, Langmuir 1999, 15, 866.
45. F. Auer, M. Scotti, A. Ulman, R. Jordan, B. Sellergren, J. Garno, G. Y. Liu, Langmuir 2000, 16, 7554.
46. D. Aspnes, J. Theeten, F. Hottier, Phys. Rev. B 1979, 20, 3292.
47. D. Landheer, J. E. Hulse, T. Quance, Thin Solid Films 1997, 293, 52.
48. F. Wooten, Optical Properties of Solids, Academic Press, London 1972.
49. E. Hutter, S. Cha, J-F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, J. Phys. Chem. B 2001, 105, 8.
50. R. W. Wood, Phil. Magm.1902, 4, 396.
51. H. Raether, Surface Plasmons on Smooth and Rough Surface and on Gratings, Berlin:Springer-Verlag, 1988.
52. E. Kretschmann, H. Raether, Z. Naturforsch. 1968, 23a, 2135.
53. de Bruijin, H. E.; Altenburg, B. S. F.; Kooyman, R. P. H.; Greve, G., J.Opt. Commun. 1991, pp.425.
54. E. Hutter, J. H. Fendler, D. Roy, J. Appl. Phys. 2001, Vol.90, pp.1977.
55. D. Roy, Appl. Spectrosc. 2001, 55, 1046.
56. H. Okamoto, T. B. Massalski, Binary Alloy Phase Diagrams, Vol.1, 2nd ed., ASM International, Materials Park, OH, 1990.
57. D. Wang, H. Dai, Angew. Chem. Int. Ed.2002, 123, 3165.
58. Y. Wu, P. Yang, J. Am. Chem. Soc. 2001, 123, 3165.
59. S. V. Nguyen, IBM J. Res. Develop. 1999, 43, 109.
60. N. Wang, Y. H. Tang, N. Wang, C. S. Lee, I. Bello, S. T. Lee, Phys. Rev. B 1998, 58, R16024.
61. Y. F. Zhang, Y. H. Tang, N. Wang, C. S. Lee, I. Bello, S. T. Lee, Phys. Rev. B 2000, 61, 4518.
62. R. Q. Zhang, Y. Lifshitz, S. T. Lee, Adv. Mater. 2003, 15, 635.
63. V. I. Merkulov, M. A. Guillorn, D. H. Lowndes, M. L. Simpson, Appl.Phys. Lett. 2001, 79, 1178.