簡易檢索 / 詳目顯示

研究生: 楊恭州
Yang, Kung-Chou
論文名稱: 快速熔融成長模擬及其應用於光子晶體慢光波導光偵測器之研究
Modeling of Rapid Melt Growth and its application for Photonic Crystal Slow Light Waveguide Photodetector
指導教授: 那允中
Neil Na
口試委員: 李明昌
Lee, Ming-Chang
林建中
Lin, Chien-Chung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2013
畢業學年度: 102
語文別: 中文
論文頁數: 56
中文關鍵詞: 光子晶體半導體波導
外文關鍵詞: Photonic crystal, Semiconductor, Waveguide
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的主題是屬於光子晶體波導的應用與設計。一般來說光偵測器的吸收波段在波長1.6微米以上的吸收效率都不太好,因此我們將把光子晶體其中一種很有用的物理現象,稱作慢光,他的意思就是要利用光子晶體的週期性結構對光造成的影響把光的群速度給慢下來,再利用單晶的鍺晶棒增加對光的吸收。首先我們會先介紹快速熔融成長 ( RMG ) 的製程,它的好處是製程簡單而且速度快,而我們將會利用它在設計出來的光子晶體波導上成長單晶的鍺晶棒。二微光子晶體在光電領域已經慢慢在工程上被拿來應用,因為它在傳導電磁波時會產生一些很有用的物理特性,在製程上也比較好做。我們設計出來的光子晶體慢光波導,從 MODE solution 計算出來的光子晶體能帶結構圖上可以找到一條慢光模態,其波段範圍大概有8奈米,並以不同波導距離下量到的功率去計算出來的吸收係數大約在 0.04 ~ 0.06 dB/microns,把這結果和以量子力學的一階能量修正項推導出的解析解作比較,我們可以發現結果大致上是符合的。但我們在元件的應用上會希望慢光這個現象能用在比較寬的波段,而不是只有8奈米,因此接下來我們可以藉由調整光子晶體波導結構的週期、波導的間距與鍺的寬度大小去改變光子能帶結構的能隙寬度與位置,最後可以把慢光波段的範圍擴大到現在通訊常用的波段與吸收較差的波段。


    致謝 I 摘要 II Abstract III 目錄 IV 圖目錄 VI 第1章 緒論 1 第2章 快速熔融成長 2 2.1 快速熔融成長簡介 2 2.2 基本理論與模擬分析 5 2.2.1 吉布斯自由能 5 2.2.2 成長速度 8 2.2.3 降溫速率 12 2.2.4 成核現象 14 第3章 慢光 25 3.1 光子晶體介紹 25 3.2 基本理論 27 3.2.1 晶格與倒晶格 27 3.2.2 馬克斯威爾方程式 31 3.2.3 布洛赫定理 34 3.3 理論模型 35 3.4 模擬計算 38 3.4.1 二維光子晶體 38 3.4.2 光子晶體波導 41 第4章 結論與未來工作 53 參考文獻 54

    [1] Y. Liu, M.D. Deal, and J. D. Plummer, "High-quality single-crystal Ge on insulator by liquid-phase epitaxy on Si substrates," Appl. Phys. Lett., vol. 84, no. 14, pp. 2563-2565, 2004.
    [2] Y. Liu, M.D. Deal, and J.D. Plummer, "Rapid melt growth of germanium crystals with self-aligned microcrucibles on Si substrates," J. Electrochem. Soc., vol.152, no. 8, pp. G688-G693, 2005.
    [3] Y. Liu, "Silicon and germanium crystallization techniques for advanced device applications," Ph.D. Dissertation, Stanford University, Stanford, 2005.
    [4] J. Feng, "High-Performance Germanium-on-Insulator MOSFETs for Three Dimensional Integrated Circuits Based on Rapid Melt Growth," PhD Dissertation, Stanford University, Stanford, 2009.
    [5] J. Feng et al., "High-Performance Gate-All-Around GeOI P-MOSFETs fabricated by Rapid Melt Growth using plasma nitridation and ALD Al2O3 gate dielectric and self-aligned NiGe contacts", IEEE Electron Device Lett., vol. 29, no.7, pp. 805- 807, 2008.
    [6] Shu-Lu Chen, "Design and process for three-dimensional heterogeneous integration," Ph.D. Dissertation, Stanford University, Stanford, 2010.
    [7] S. Koh et al., "High quality single-crystal laterally graded SiGe on insulator by rapid melt growth", Electrochemical and Solid-State Letters, 13(8), pp. 281-283, 2010.
    [8] Fei Gao, S.J. Lee, S. Balakumar, Anyan Du, Yong-Lim Foo, Dim-Lee Kwong, "Ge diffusion and solid phase epitaxy growth to form Si1-xGex/Si andGe on insulator structure," Thin Solid Films 504, 69 – 72, 2006.
    [9] S. Balakumar, M. M. Roy, B. Ramamurthy, C. H. Tung, Gao Fei, S. Tripathy, Chi Dongzhi, R. Kumar, N. Balasubramanian, and D. L. Kwong, "Fabrication Aspects of Germanium on Insulator from Sputtered Ge on Si-Substrates", Electrochem. Solid-State Lett. 9, issue 5, G158 -G160, 2006.
    [10] Masanobu Miyao, Takanori Tanaka, Kaoru Toko, and Masanori Tanaka, "Giant Ge-on-Insulator Formation by Si–Ge Mixing-Triggered Liquid-Phase Epitaxy," Appl. Phys. Express 2, 045503 (2009).
    [11] Masanobu Miyao, Kaoru Toko, Takanori Tanaka, and Taizoh Sadoh, "High-quality single-crystal Ge stripes on quartz substrate by rapid-melting-growth, " Appl. Phys.Lett., 95, 022115, 2009.
    [12] Shu Hu, Paul W. Leu, Ann F. Marshall and Paul C. McIntyre, "Single-crystal germanium layers grown on silicon by nanowire seeding," Nature nanotechnology Lett. 4, 649 - 653, 2009.
    [13] Douglas J. Tweet,a_ Jong Jan Lee, Jer-Shen Maa, and Sheng Teng Hsu, "Characterization and reduction of twist in Ge on insulator produced by localized liquid phase epitaxy, " Appl. Phys.Lett., 87, 141908, 2005.
    [14] Reza Abbaschian, Lara Abbaschian, Robert E. Reed-Hill, "Physical Metallurgy Principles Fourth Edition," P.164-185, P393-401, Cengage Learning, 2000, .
    [15] D. Turnbull, "Principles of solidification," in Thermodynamics in Physical Metallurgy. Cleveland, Ohio: American Society for Metals, 1950, pp. 282-306.
    [16] Kaoru Toko, Yasuharu Ohta, Takanori Tanaka, Taizoh Sadoh, and Masanobu Miyao, "Chip-size formation of high-mobility Ge strips on SiN films by cooling rate controlled rapid-melting growth, " Appl. Phys. Lett. 99, 032103, 2011.
    [17] M. Volmer and A. Weber, Z. Phys. Chem. (Leipzig) 119, 227, 1926.
    [18] R. Becker and W. Döring, Ann. Phys. 24, 719 , 1935
    [19] D. Turnbull and R. E. Cech, "Microscopic Observation of the Solidification of Small Metal Droplets, " J. Appl. Phys. 21, 804, 1950.
    [20] N. Kaiser, A. Cr.oll, F.R. Szofran, S.D. Cobb, K.W. Benz, "Wetting angle and surface tension of germanium melts on different substrate materials," Journal of Crystal Growth 231, 448–457, 2001.
    [21] E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059, 1987.
    [22] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486, 1987.
    [23] M. Notomi,K. Y amada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett. 87. 253902, 2001.
    [24] Yurii A. Vlasov, Martin O’Boyle, Hendrik F. Hamann, Sharee J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” 10.1038, nature04210, 2005.
    [25] T F Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D: Appl. Phys. 40 2666–2670, 2007.
    [26] Lei Dai and Chun Jiang, “Low dispersion slow light waveguide with high coupling efficiency,” J. Phys. D: Appl. Phys. 42, 225102, 2009.
    [27] Lei Dai, Chun Jiang, “Ultrawideband Low Dispersion Slow Light Waveguides,” journal of lightwave technology, vol. 27, no. 14, 2009.
    [28] Jesper Goor Pedersen, Sanshui Xiao, and Niels Asger Mortensen, “Limits of slow light in photonic crystals,” Phys. Rev. B. 78. 153101, 2008.
    [29] Toshihiko Baba, Member, IEEE, Daisuke Mori, Kyoji Inoshita, and Yusuke Kuroki, “Light Localizations in Photonic Crystal Line Defect Waveguides,” journal of selected toptics in quamtum electronics, vol. 10, no. 3, 2004.
    [30] J. Joannopoulos, R. Meade, and J. Winn, “Photonic Crystals,” Princeton: Princeton Univ., 1995.
    [31] 張高德, 欒丕綱, “光子晶體中的波傳播,” 物理雙月刊, 28卷, 5期, 2006.
    [32] 欒丕綱, 陳啓昌, “光子晶體 從蝴蝶翅膀到奈米光子學,” 五南出版社, 2005.
    [33] Alexander Petrov, “Slow light photonic crystal line-defect waveguides,” Ph.D. Dissertation, Sankt Petersburg, 2008.
    [34] Wei-Cheng Lai, Swapnajit Chakravarty,Xiaolong Wang, Cheyun Lin, Ray T. Chen, “Photonic crystal slot waveguide absorption spectrometer for on-chip near-infrared spectroscopy of xylene in water,” Appl. Phys. Lett. 98, 023304, 2011.
    [35] Dang Hoang Long, In-Kag Hwang, and Sang-Wan Ryu, “Design Optimization of Photonic Crystal Structure for Improved Light Extraction of GaN LED,” journal of selected toptics in quamtum electronics, vol.15, no. 4, 2009.
    [36] J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, J. R. Wendt, M. M. Sigalas, S. R. J.
    Brueck, D. Li, and M. Shagame “III-Nitride LEDs with photonic crystal structures,” SPIE Vol. 5739 107, .
    [37] H. Ichikawa, and T. Baba, “Efficiency enhancement in a light-emitting diode with a two-dimensional surface grating photonic crystal,” Appl. Phys. Lett. 84, 457, 2004.
    [38]Kyeong-Jae Byeon, Joong-Yeon Cho, Jinseung Kim, Hyoungwon Park, and Heon Lee “Fabrication of SiNx-based photonic crystals on GaN-based LED devices with patterned sapphire substrate by nanoimprint lithography,” optics express 11426, Vol. 20, No. 10, 2012.
    [39] Elison Matioli, Claude Weisbuch, “Impact of photonic crystals on LED light extraction efficiency: approaches and limits to vertical structure designs,” J. Phys. D: Appl. Phys. 43, 354005, 2010
    [40] O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O’Brien, and P. D. Dapkus, Fellow, IEEE , “Lithographic Tuning of a Two-Dimensional Photonic Crystal Laser Array,” IEEE photonic technology lett, VOL. 12, NO. 9, 2000.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE