簡易檢索 / 詳目顯示

研究生: 陳威均
Chen, Wei-Jim
論文名稱: CMOS電容式流量感測器之設計與製作
Design and Implementation of a CMOS Capacitive Flow Sensor
指導教授: 盧向成
Lu, Shiang-Cheng
口試委員: 盧向成
Lu, Shiang-Cheng
劉承賢
Liu, Cheng-Hsien
傅建中
FU, Chien-Chung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2013
畢業學年度: 102
語文別: 中文
論文頁數: 69
中文關鍵詞: 電容式流量感測呼吸
外文關鍵詞: Flow sensor
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這項研究提出一種用於人體呼吸流量的微感測器,可對於呼吸疾病患者做長時間的監測與觀察。透過CMOS MEMS的技術將感測結構與電路整合在單晶片上,相較於傳統MEMS所用的多晶片整合,可有效降低外接線路所帶來的寄生效應;而且在體積上也可大幅縮小,一方面可以降低成本,另一方面可提高模組化的整合性。
    本研究目的在於感測呼吸的訊號,所以在晶片的感測微結構使用了三層極板的設計,製作出差分式感測電容,使其能夠增加呼吸流量的感測訊號。本晶片使用 TSMC 0.35μm 2P4M 標準製程定義電路與微結構,透過後製程將犧牲金屬層(Metal1與Metal3)蝕刻掉以釋放出面積為 320μm × 230μm 的感測薄膜結構,並具有 124fF的差分感測電容。
    本晶片總面積為 2.46×2.46 mm^2。工作電壓為5V,電流消耗為5mA。本實驗結果已經量測出連續的呼吸訊號,並且經由空氣幫浦做定流量的量測後,可操作在流量0~6 L⁄min的範圍內,感測度為3.33mV/(L/min),並且經由換算可知感測解析度為 34.4(mL⁄min)。


    The research studies a capacitive micro-sensor used for long-term respiratory monitoring of patients with breathing difficulties. By using CMOS-MEMS technology, we can integrate sensing structures and circuits into one chip. Parasitic effect is therefore reduced to enhance the signal-to-noise ratio. The chip size and fabrication cost are reduced as well.

    The capacitive flow sensor is fabricated by using the TSMC 0.35-μm 2P4M (two-polysilicon-four-metal) CMOS process. The differential sensing capacitances are formed by the metallization and polysilicon layers. Capacitance change is produced by momentum change of the air flow on the microstructure, which is released by wet-etching of metal-1 and metal-3. The sensor area is 320μm × 230μm. The sensing capacitances are about 124 fF.

    The total chip area is 2.46 × 2.46 mm^2. The sensing circuit is operated at 5 V with a total current consumption of 5 mA. The measured data shows the sensor has a sensitivity of 3.33 mV/(L⁄min) and a detection limit of 34.4 (mL/min) within a 1-Hz bandwidth. We have successfully measured the waveform from a subject’s nasal respiration.

    摘要…....i Abstract.ii 誌謝…....iii 目錄…....iv 圖目錄....viii 表目錄....x 一、 緒論 1 1-1. 研究動機 1 1-2. 互補式金氧半導體微機電系統(CMOS-MEMS)簡介 2 1-3. 文獻回顧 4 1-3-1. 壓電式流量感測 4 1-3-2. 壓阻式流量感測 5 1-3-3. 熱感式流量感測 7 二、 流量感測 12 2-1. 流量感測介紹 12 2-2. 電容式流量感測微結構之設計 15 2-2-1. 結構製程設計 15 2-2-2. 感測電容設計 19 2-3. 電容式流量感測電路之設計 22 2-3-1. 第一級 前端放大器 24 2-3-2. 第二級 混波器 25 2-3-2. 第三級 減法器 28 2-3-3. 各級電路之模擬分析 29 2-4. 電容式流量感測微結構之模擬 32 三、 後製程結果與量測 36 3-1. 後製程結果 36 3-2. 量測裝置設備 38 3-3. 量測結果 41 3-3-1. 微結構之頻率響應 41 3-3-2. 電路量測 42 3-3-3. 流量感測器量測 44 四、 分析與改善 47 4-1. 結果分析 47 4-2. 未來改善 53 五、 結論 55 六、 參考文獻 56 七、 附錄 60 7-1. 晶片佈局圖 60 7-2. 晶片拍照圖 61 7-3. 麥克風改良結構之量測 63

    [1] Y. Tomimatsu, K. Kuwana, T. Kobayashi, T. Itoh, and R. Maeda, “A piezoelectric flow sensor for wake-up switch of wireless sensor network node,” 2012 Second Workshop on Design, Control and Software Implementation for Distributed MEMS, pp.53-57, 2-3 April 2012.

    [2] H. Liu, S. Zhang, R. Kathiresan, T. Kobayashi, and C. Lee, “Development of piezoelectric micro-cantilever flow sensor with wind-driven energy harvesting capability,” Appl. Phys. Lett., vol 100, 223905 , 2012.

    [3] Y.H. Wang, C.Y. Lee, and C.M. Chiang, “A mems-based air flow sensor with a free-standing micro-cantilever structure,” Sensors, vol. 7, pp.2389-2401, 2007.

    [4] C. L. Wei, C. F. Lin, and I.T. Tseng, “A novel mems respiratory flow sensor,” IEEE Sensors J., vol. 10, no. 1, pp. 16-18, Jan. 2010.

    [5] D. Li, T. Li and D. Zhang, “A monolithic piezoresistive pressure-flow sensor with integrated signal-conditioning circuit,” IEEE Sensors J., vol. 11, no. 9, pp. 2122-2128, Sept. 2011.

    [6] J. Robadey, O. Paul and H. Baltes, “Two-dimensional integrated gas flow sensors by CMOS IC technology,” J. Micromech. Microeng., vol. 5, pp. 243-250, 1995.

    [7] P. Furjes, G. Legradi, C. Ducso, A. Aszodi, and I. Barsony, “Thermal
    characterisation of a direction dependent flow sensor,” Sensors Actuators A, vol. 115, nos. 2–3, pp. 417-423, 2004.

    [8] S. Cerimovic, A. Talic, T.Sauter, F. Kohl, R. Beigelbeck, J. Schalko, and A. Jachimowicz, “A novel thermal transduction method for sub-mW flow sensors,” IEEE Sensors Conference , pp. 1325-1328, 2009.

    [9] M. L. Li, P. H. Wang, P. L. Liao, and M. S.-C. Lu, “Three dimensional photoacoustic imaging by a CMOS micromachined capacitive ultrasonic sensor,” IEEE Elec. Dev. Lett., vol. 32, no. 8, pp. 1149-1151, Aug. 2011.

    [10] S. H. Liao, W. J. Chen and M. S.-C. Lu, “A CMOS MEMS capacitive flow sensor for respiratory monitoring,” IEEE Sensors Journal, vo. 13, no. 5, pp. 1401-1402, 2013.

    [11] A. Sharma, M. F. Zaman, and F. Ayazi, “A 104-dB dynamic range transimpedance-based CMOS ASIC for tuning fork microgyroscopes,” IEEE Journal of Solid-State Circuits, vol. 42, no. 8, pp. 1790-1802 , Aug. 2007.
    [12] S. Y. Peng, M. S. Qureshi, and P. E. Hasler, “A charge-based low-power high-SNR capacitive sensing interface circuit,” IEEE Transactions on circuits and systems, vol. 55, no. 7, pp. 1863-1872 Aug. 2008.

    [13] M. W. Baker and R. Sarpeshkar, “A low-power high-PSRR currentmode microphone preamplifier,” IEEE J. Solid-State Circuits, vol. 38,no. 10, pp. 1671–1678, Oct. 2003.

    [14] M. Pedersen, W. Olthuis, and P. Bergveld, “High-performance condenser microphone with fully integrated CMOS amplifier and DC-DC voltage converter,” J. Microelectromech. Syst., vol. 7, no. 4, pp. 387–394, Dec. 1998.

    [15]J. Chen, L. T. Liu, Z. J. Li, Z. Tan, Y. Xu, and J. Ma, “On the single-chip condenser miniature microphone using DRIE and backside etching techniques,” Sensors and Actuators A-Physical, vol. 103, pp. 42-47, Jan. 2003.

    [16] H. Darabi and A. A. Abidi, “Noise in RF-CMOS mixers: a simple physical model,” IEEE Journal Solid-State Circuits, vol. 35, pp. 15-25, 2000.

    [17] H. Qu, D. Fang , and H. Xie, “A monolithic CMOS-MEMS 3-axis accelerometer with a low-noise, low-power dual-chopper amplifier,” IEEE Sensors Journal , vol. 8, pp. 1511-1518, 2008.

    [18] J.M. Bustillo, R.T. Howe, and R.S. Muller, ”Surface micromachining for microelectromechanical systems,” Proc. IEEE, vol. 86, pp. 1552-1574, Aug. 1998.

    [19] G. J. M. Krijnen, M. Dijkstra, J. J. van Baar, S. S. Shankar, W. J. Kuipers,R. J. H. de Boer, D. Altpeter, T. S. J. Lammerink, and R. Wiegerink, “MEMS based hair flow-sensors as model systems for acoustic perception studies,” Nanotechnology, vol. 17, pp. 84-89, 2006.

    [20] N. Chen, C. Tucker, J. M. Engel, Y. Yang, S. Pandya, and C. Liu, “Design and characterization of artificial haircell sensor for flow sensing with ultrahigh velocity and angular sensitivity,” Journal Microelectromech. Syst., vol. 16, no. 5, pp. 999-1014, Oct. 2007.

    [21] J. Sun, D. Cui, L. Zhang, X. Chen, and H. Li,” A micromachined gas flow sensor with polydimethylsiloxane flow channels,” Journal of Microelectrmechanical Syst., vol. 22, no. 3, pp. 723-729, Jun. 2013.

    [22] S. Zhang, L. Lou, W. T. Park, and C. Lee,” Characterization of a silicon nanowire-based cantilever air-flow sensor,” J. Micromech. Microeng. , vol. 22 , 095008 , 2012.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE