簡易檢索 / 詳目顯示

研究生: 石怡家
Shih, Yi Chia
論文名稱: 4×4 電容式超音波感測器與峰值感測電路之設計與實作
Design and Implementation of 4×4 CMOS Capacitive Ultrasonic Sensors with Peak-Detection Sensing Circuits
指導教授: 盧向成
Lu, Shiang Cheng
口試委員: 邱一
李昇憲
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 60
中文關鍵詞: 超音波電容式感測器
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究運用CMOS MEMS技術設計出電容式超音波感測器,特色
    是整合電路和感測器於單一晶片,能有效的降低寄生電容。本研究製
    作出電容式超音波傳感器並結合峰值感測電路(Peak Detection
    Circuit),在傳感器接收到超音波並轉換為電壓訊號後放大並取樣峰
    值,將峰值記錄形成數值表,並將數值對應影像之明暗度即可快速成
    像。本研究所使用的製程為TSMC 0.18 m 1P6M CMOS Process,利
    用該製程製作出超音波感測器,並沉積2.4 m之Parylene C做封裝,
    感測器成功在水中進行超音波量測,實驗結果顯示感測薄膜之共振頻
    率為3.8 MHz,感測頻寬為2.8 MHz,感測度為494.505 mV􀭮􀭮⁄MPa/V。
    峰值感測電路以頻率為1 MHz 至 10 MHz、振幅為0.1 V至1 V之作測
    試,輸入振幅為0.1 V至0.5 V之誤差在 ±20% 以內,輸入振幅為0.5 V
    至1 V之誤差可降為 ±12% 以內。若峰值感測電路採用矯正機制可減
    少峰值誤差,將可提升影像解析度,於醫療將有更大應用。


    This work presents a capacitive ultrasonic sensor chip fabricated by
    the 0.18-m CMOS-MEMS technology. The unique feature of this work
    is integrating the circuit and the sensor on the same chip, which can
    efficiently reduce the parasitic capacitance. The study combines
    capacitive ultrasonic sensors with peak-detection circuits. Ultrasonic
    waves produced by the photoacoustic effect are received by the sensing
    pixels, followed by signal amplification, peak detection, and collection of
    all the detected values. These values correspond to the brightness of the
    image. The time for image production is significantly reduced. The
    CMOS MEMS technology allows convenient signal processing to
    enhance scalability of the array and sensor miniaturization to increase
    image resolution. The structure is successfully released by wet etching
    and sealed by 2.4-μm Parylene C. The fabricated capacitive ultrasonic
    sensor is tested in water. The measured resonant frequency, band width
    and sensitivity are 3.8 MHz, 2.8 MHz, and 494.505 mV􀭮􀭮⁄MPa/V. In the
    experiment we successfully detect and hold the peak values by using
    input signals with frequencies from 1 MHz to 10 MHz and amplitudes
    from 0.1V to 1V. The errors are within ±20% for inputs from 0.1V to
    0.5V. The errors reduce to less than ±12% when input voltage is from
    0.5V to 1 V. The peak detection circuit design can be improved by the
    calibration. Therefore, a better image resolution can achieved.

    摘要 ......................................................................................................... I Abstract ................................................................................................. II 致謝 ...................................................................................................... III 目錄 ...................................................................................................... IV 圖目錄 .................................................................................................. VI 表目錄 .................................................................................................. IX 第一章 緒論 ........................................................................................... 1 1.1 簡介 ............................................................................................ 1 1.2 互補式金氧半導體微機電系統 ................................................. 3 1.3 文獻回顧 .................................................................................... 4 1.4 研究動機 .................................................................................... 7 第二章 超音波感測器.......................................................................... 10 2.1 電容式超音波感測原理 ........................................................... 10 2.2 感測薄膜之設計與模擬 ........................................................... 13 2.3 後製程 ...................................................................................... 18 第三章 電路設計 ................................................................................. 20 3.1 整體電路之運作 ....................................................................... 20 V 3.2 電路規格與設計 ....................................................................... 21 3.2.1 前端放大器 .................................................................... 22 3.2.2 輸出緩衝器 .................................................................... 26 3.2.3 峰值感測電路 ................................................................ 27 第四章 實驗與量測結果 ...................................................................... 40 4.1 後製程結果 .............................................................................. 40 4.2 晶片量測 .................................................................................. 43 4.2.1 峰值感測電路量測 ........................................................ 43 4.2.2 超音波實驗 .................................................................... 47 第五章 結論 ......................................................................................... 55 5.1 研究成果與討論 ....................................................................... 55 5.2 未來工作 .................................................................................. 55 參考文獻 ............................................................................................... 57

    [1] A. G .Bell, “On the production and reproduction of sound by light,”
    American Journal of Science, vol. 20, pp. 305-324, Aug. 1880.
    [2] M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,”
    Review of Scientific Instruments, vol. 77, no. 4, art. no. 041101, Apr.
    2006.
    [3] G. Ku, B. D. Fornage, and X. Jim et al, “Thermoacoustic and
    photoacoustic tomography of thick biological tissues toward breast
    imaging,” Technology in Cancer Research and Treatment, vol. 4, no.
    5, pp. 559–566, Oct. 2005.
    [4] X. D. Wang, Y. J. Pang, and G. Ku et al, “Noninvasive laser-induced
    photoacoustic tomography for structural and functional in vivo
    imaging of the brain,” Nature Biotechnology, vol. 21, no. 7, pp.
    803-806, Jul. 2003.
    [5] F. F. Jobsis, “Noninvasive, infrared monitoring of cerebral and
    myocardial oxygen sufficiency and circulatory parameters,” Science,
    vol. 198, pp. 1264-1267, Dec. 1977.
    [6] X. C. Jin, I. Ladabaum, and B. T. Khuri-Yakub, “The
    microfabrication of capacitive ultrasonic transducers.” Int. Conf.
    Solid-State Sensors and Actuators, pp. 437-440, June 1997.
    [7] X. Jin, O. Oralkan, and B. T. Khuri-Yakub et al, “Characterization of
    one-dimensional capacitive micromachined ultrasonic immersion
    transducer arrays,” IEEE Transactions on Ultrasonic, Ferroelectrics,
    and Frequency Control, vol. 48, no. 3, pp. 750-760, May 2001.
    58
    [8] J. M. Bustillo, R. T. Howe, and R. S. Muller, “Surface
    micromachining for microelectromechanical systems,” Proc.
    IEEE, vol. 86, pp.1552-1574, Aug. 1998.
    [9] M. Birkholz, “Crystal-field induced dipoles in heteropolar crystals –
    II. physical significance,” ZeitschriftfürPhysik B Condensed Matter,
    vol. 96, Issue. 3, pp. 333-340, May 1995.
    [10] A. Manbachi and R. S. C. Cobbold, “Development and application
    of piezoelectric materials for ultrasound generation and detection,”
    Ultrasound, vol. 19, no. 4, pp. 187-196, Nov. 2011.
    [11] R. W. Martin, S. Vaezy, and L. A. Crum et al, “Water-cooled,
    high-intensity ultrasoundsurgical applicators with frequency
    tracking,” IEEE Trans. Ultrason. Ferroelect. Freq. Control, vol. 50,
    no.10, Oct. 2003.
    [12] R. Held, T. N. Nguyen, and S. Vaezy, “Transvaginal 3D
    image-guided high intensity focused ultrasound array” AIP Conf.
    Proc, vol. 754, no. 170, Mar. 2005.
    [13] X. Cheng, J. Chen, and P. C. Li et al, “A miniature capacitive
    ultrasonic imager array,” IEEE Sensors Journal, vol. 9, no. 5, pp.
    569-577, May 2009.
    [14] A. Logan and J. T. W. Yeow, “Fabricating capacitive micromachined
    ultrasonic transducers with a novel silicon-nitride-based wafer
    bonding process,” IEEE Transactions on Ultrasonics, Ferroelectrics,
    and Frequency Control, vol. 56, no. 5, pp. 1074-1084, May 2009.
    [15] Y. Huang, A. S. Ergun, and B. T. Khuri-Yakub et al, “Fabricating
    capacitive micromachined ultrasonic transducers with wafer-bonding
    59
    technology,” Journal of Microelectromechanical Systems, vol. 12, no.
    2, pp. 128-137, Apr. 2003.
    [16] P. Zhang, G. Fitzpatrick, and R. J. Zemp et al, “Double-SOI
    wafer-bonded CMUTs with improved electrical safety and minimal
    roughness of dielectric and electrode surfaces,” Journal of
    Microelectromechanical Systems, vol. 21, no. 3, pp. 668-680, Jun.
    2012.
    [17] X. Zhuang, I. O. Wygant, and B. T. Khuri-Yakub et al,
    “Wafer-bonded 2-D CMUT arrays incorporating through-wafer
    trench-isolated interconnects with a supporting frame,” Ultrasonics,
    Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 56,
    no. 1, pp. 182-192, Jan. 2009.
    [18] D. T. Yeh, O. Oralkan, and B. T. Khuri-Yakub et al, “3-D ultrasound
    imaging using a forward-looking CMUT ring array for
    intravascular/intracardiac applications,” IEEE Transactions on
    Ultrasonics, Ferroelectrics and Frequency Control, vol. 53, no. 6, pp.
    1202- 1211, June 2006.
    [19] O. Oralkan, A. S. Ergun, and B. T. Khuri-Yakub et al, “Volumetric
    ultrasound imaging using 2-D CMUT arrays,” IEEE Transactions on
    Ultrasonics, Ferroelectrics and Frequency Control, vol. 50, no. 11,
    pp. 1581- 1594, Nov. 2003.
    [20] C. B. Doody, X. Cheng, and R. D. White, “Modeling and
    characterization of CMOS-fabricatedcapacitive micromachined
    ultrasound transducers,” Journal of Microelectromechanical Systems,
    vol. 20, no. 1, pp. 104-118, Feb. 2011.
    60
    [21] S. Vaithilingam, T. J. Ma, Y. Furukawa, and B.T. Khuri-Yakub et al,
    “Three-dimensional photoacoustic imaging using a two-dimensional
    CMUT array,” IEEE Transactions on Ultrasonics, Ferroelectrics and
    Frequency Control, vol. 56, no. 11, pp. 11-19, Nov. 2009.
    [22] M. L. Li, P. H. Wang, P. L. Liao, and M. S. C. Lu,
    “Three-dimensional photoacoustic imaging by a CMOS
    micromachined capacitive ultrasonic sensor,” IEEE Electron Device
    Letters, vol. 32, no. 8, pp. 1149-1151, Aug. 2011.
    [23] Y. Wei, Z. Tang, X. Chen, Y. He, and H. Liu, “Fast photoacoustic
    tomography by use of acoustic lens,” in 9th Int. Conf. Photonics and
    Imaging in Biology and Medicine, pp. 277, Mar. 2011.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE