簡易檢索 / 詳目顯示

研究生: 謝英豪
Ying-Hao Hsieh
論文名稱: 鎳金屬矽化物催化結晶之複晶矽薄膜高溫退火效應之研究
Study on The Effects of Post Annealing of Nickel-Induced Polycrystalline Silicon Thin Film
指導教授: 周立人
Li-Jen Chou
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2001
畢業學年度: 89
語文別: 英文
論文頁數: 38
中文關鍵詞: 低溫複晶矽鎳矽化物結晶
外文關鍵詞: low temperature polysilicon thin film, nickel silicide, crystallization
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    以金屬催化非晶矽薄膜結晶化的方法來製作低溫複晶矽薄膜近來受到廣泛的研究,但是所有的論文大都只有探討以金屬催化側向結晶法所得之複晶矽薄膜的品質,但並未提到高溫退火對其造成的影響,且由於低溫的限制,故以金屬催化非晶矽薄膜結晶化的方法製作之低溫複晶矽薄膜,其品質並不能滿足於許多方面的應用,在本論文中我們發現在金屬催化側向結晶製程後,再加上一段短時間之高溫退火,複晶矽薄膜的結晶性及晶粒尺寸會明顯的增加。

    在第一部分,我們將討論金屬催化側向結晶之複晶矽薄膜進行二次高溫退火之效應,由拉曼光譜的分析,我們發現隨著二次高溫退火溫度的提升,複晶矽薄膜的結晶性可以被明顯的改善;由電子顯微鏡的影像,我們發現過高溫二次退火,金屬催化側向結晶之複晶矽薄膜中的針狀結構晶粒,會產生接合效應而形成大尺寸之晶粒;這些效應可能是因為複晶矽薄膜產生二次晶粒再結晶所造成,最後我們將提出能的模型來解釋複晶矽薄膜產生二次晶粒再結晶的現象。

    在第二部分,我們將利用臨場曲率量測系統來比較金屬催化側向結晶及金屬催化側向結晶後之高溫退火之應變變化,在本研究中討論到曲率的變化及應力溫度關係的趨勢,我們發現金屬催化非晶矽薄膜結晶化時,基板曲率朝著減小的趨勢;另一方面,對金屬催化側向結晶之複晶矽薄膜進行二次高溫退火時,基板曲率變化將朝著增加的趨勢,另外,我們亦發現金屬催化側向結晶製程的溫度及金屬催化側向結晶之複晶矽薄膜二次高溫退火的溫度亦會明顯的影響基板曲率變化的趨勢。最後我們將根據這些實驗結果提出可能的解釋。


    Abstract
    Low temperature polycrystalline silicon thin films fabricated by metal induced crystallization method have been widely studied. But all related papers just discuss the effects of MILC method on the quality of poly-Si. Due to the limitation of low temperature, the quality of the poly-Si thin films cannot satisfy certain application. In this thesis we have discovered that by applying high temperature annealing to amorphous silicon with metal-induced-crystallization (MILC) treatment, the grain size and crystallinity of the resulting silicon can be significantly enhanced.

    In first section, we will discuss the phenomenon of the post high-temperature annealing on the MILC poly-Si thin films. From the Raman analyses, we have found that the crystallinity of poly-Si can be significantly improved with the increasing of the post-MILC annealing temperature. From the TEM images, we have found that after the post high-temperature annealing, the needle-like grains of MILC poly-Si thin films will be merged and the larger grains can be formed. These effects are due to the secondary grain growth of the poly-Si thin films. Finally, we established a possible model to explain the phenomenon of the secondary grain growth of MILC poly-Si.

    In the second section, we employ the in situ curvature measurement system to compare the strain variation between MILC and post-MILC annealing. The transition of stress curvature and the tendency of stress V.S. temperature relation have been examined in this study. We have found that the stress curvature of the substrate decreased during the MILC of a-Si thin film. On the other hand, the stress curvature of the substrates with the MILC poly-Si thin films increased during the post MILC annealing, In addition, the thickness of a-Si for MILC and the temperature of post-MILC annealing affect the curvature transition in the substrate. Finally, we also propose possible explanations of those effects.

    Contents Chapter 1 Introduction 1 1.1 An Overview of Polycrystalline Silicon Thin Film Technology 1 1.2 An Overview of the Methods for Preparing Polycrystalline Silicon Thin Films 2 1.2.1 Solid Phase Crystallization (SPC) 3 1.2.2 Excimer Laser Crystallization (ELC) 4 1.2.3 Metal Induce Crystallization (MIC) and Metal Induce Lateral Crystallization (MILC) 5 1.3 Grain Boundaries and Defects in Polycrystalline Silicon Thin Film 6 1.4 Secondary-Step Annealing with High Temperature 7 1.5 Phenomenon of Secondary Grain Growth 7 Chapter 2 Experiment Procedures 9 2.1 Bare Silicon Wafer Cleaning 9 2.2 Screen Thermal Oxidation 9 2.3 Amorphous Silicon Thin Film Deposition 9 2.4 Pattern Transfer Process 10 2.5 Thin Metal Film Deposition 11 2.6 Lift Off Process 11 2.7 First Step Low Temperature Annealing 11 2.8 High-Temperature Secondary-Step Annealing 12 2.9 Raman Spectroscopy Analyses 12 2.10 Scanning Electron Microscope Observation 12 2.11 Preparation of Samples for Transmission Electron Microscope Examination 12 2.12 Transmission Electron Microscope Observation 14 Chapter 3 Results and Discussions 15 3-1 The Mechanism of Metal (Ni) Induced Lateral Crystallization (MILC) 15 3.2 Post-Annealing Effects on Metal-Induced Crystallized Polycrystalline Silicon Thin Film 16 3.2.1 Micro-Raman Spectroscopy Analysis 16 3.2.2 Analyses of Scanning Electron Microscopy (SEM) Images 17 3.2.3 Analyses of Transmission Electron microscopy (TEM) Images 18 3.2.4 The Model for Post High-Temperature Annealing Effects on Metal-Induced Crystallized Polycrystalline Silicon Thin Film 22 3.3 In-Situ Curvature Study of MILC and Post-MILC Annealing of Poly-Si Thin Films 24 3.3.1 The Curvature Transition of the Metal Induced Crystallization of Amorphous Silicon 24 3.3.2 The Curvature Transition of Post-MILC Annealing 25 Chapter 4 Summary and Conclusions 27 References 29 Figure caption 34

    References
    [1] Ichio Yudasaka and Hiroyuki Ohshima, “polysilicon thin film transistors”, Mat. Res. Soc. Symp. Proc., 182,1990.
    [2] S.Wolf and R.N.Taauber, “Silicon processing for the VLSI Era,” Lattice Press, California, vol.1, chap.6, p.161,1986.
    [3] S.D.Brotherton, “Polycrystalline silicon thin film transistors,” Semicond. Sci. Technol., 10, 1995.
    [4] J. Ohwada, M. Takabatake, Y. A. Ono, A. Mimura, K. Ono and N. Konish, “Peripheral circuit integrated poly-Si TFT-LCD with gray scale representation,” IEEE Trans. Electron Devices, ED-36, 1923, (1989)
    [5] A. G. Lewis, David D. Lee and R. H. Bruce, “Polysilicon TFT circuit design and performance,” IEEE J. Solid-State Circuit, 27,1833, (1992).
    [6] T. Morita, Y. Yamamoto, M. Itoh, H. Yoneda, Y. Yamane, S. Tsuchimoto, F. Funadda and K. Awane, “VGA driving with low temperature processed poly-Si TFTs,” IEDM Tech. Dig. 841, (1995).
    [7] M. J. Edwards, S. D. Brotherton, J. R. Ayres, D. J. McCulloch and J. P. Gowers,” Laser crystallized poly-Si circuits for AMLCDs,” Asia Display, 335 (1995).
    [8] G. K. Giust and T. W. Sigmon “Microstructural characterization of solid-phase crystallized amorphous silicon films recrystallized using an excimer laser,” Appl. Phys. Lett. 70, 767 (1997)
    [9] K. Ishikawa, M. Ozawa, C. H. Oh and M. Matsumura “Excimer-laser-induced lateral-growth of silicon thin films,” Jpn. J. Appl. Phys. 37, 731 (1998)
    [10] M. A. Crowder, P. G. Garey, P. M. Smith, R. S. Sposili, H. S. Cho, J. S. Im “Low-temperature single-crystal Si TFT’s fabricated on Si films proceed via sequential lateral solidification,” IEEE Electron Device Lett. EDL-19, 306 (1998)
    [11] E. Fogarassy, S. de Unamuno, P. Legagneux, F. Plais, D. Pribat, B. Godard, M. Stehle “Surface melt dynamics and super lateral growth regime in long pulse duration excimer laser crystallization of amorphous Si films,” Thin Solid Films 337,143 (1999)
    [12] A. Mimura, N. Konishi, K. Ono, J. Ohwada, Y. Hosokawa, Y. Ono, T. Suzuki, K. Miyata, and H. Kawakami, "High performance low-temperature poly-Si n-channel TFTs for LCD," IEEE Trans. Electron Devices, ED-36, 351, (1989).
    [13] M. K. Hatalis and D. W. Greve, "High performance thin-film transistors in low-temperature crystallized LPCVD amorphous silicon films," IEEE Electron Device Lett. EDL-8, 361, (1987).
    [14] A. Nakamura, F. Emoto, E. Fujii, A. Yamamoto, Y. Uemoto, "Analysis of solid phase crystallization in amorphized polycrystalline Si films on quartz substrate," J. Appl. Phys. 66, 4248, 1989.
    [15] M. Kinugawa, M. Kakamu, T. Yoshida, T. Nakayama, S. Morita, K. Kubota, F. Matsuoka, H. Oyamatsu, K. Ochii, and K. Maeguchi, "TFT (thin film transistor) cell technology for 4 Mbit and more high density SRAMs," 1990 Symp. VLSI Technology Dig. Tech. Papers, 23 (1990)
    [16] T. Aoyama, G. Kawachi, N. Konishi, T. Suzuki, Y. Okajima, and M. Miyata, "Crystallization of LPCVD silicon films by low temperature annealing," J. Electrochem. Soc. 136, 1169 (1989).
    [17] A. Nakamura, F. Emoto, E. Fujji, Y. Uemoto, A. Yamamoto, K. Senda, G. Kano. “Recrystallization mechanism for solid phase growth of poly-Si films on quartz substrate.”, Jpn. J. Appl. Phys. Pt.2 27, 2408 (1988)
    [18] E. Scheid, B. De Maauduit, P. Taurines and D. Bielle-Daspet, "Super large grain polycrystalline silicon obtained from pyrolysis ofSi2H6 and annealing," Jpn. J. Appl. Phys., pt. 2, 29, L2105 (1990).
    [19] K. Nakazawa, "Recrystallization of amorphous silicon films deposited by low-pressure chemical vapor deposition from Si2H6 gas," J. Appl. Phys. 69, 1703 (1991).
    [20] C. H. Hong, C. Y. Park and H. J. Kirn, "Structure and crystallization of low-pressure chemical vapor deposited silicon films using Si2H6 gas," J. Appl. Phys. 71, 5427 (1992).
    [21] A. T. Voutsas and M. K. Hatalis, "Deposition and crystallization of a-Si low pressure chemical vapor deposited Films obtain by low-temperature pyrolysis of disilane," J. Electrochem. Soc. 140, 871 (1993).
    [22] S. Hasegawa, S. Sakamoto, T. Inokuma and Y. Kurata, "Structure of recrystallized silicon films prepared from amorphous silicon deposited using disilane," Appl. Phys. Lett. 62, 1218 (1993).
    [23] M. K. Hatalis and D. W. Greve, "Large grain polycrystalline silicon by low-temperature annealing of low-pressure chemical vapor deposited amorphous silicon films," J. of Appl. Phys. 63, 2260 (1988).
    [24] K. Sera, F. Okumura, H. Uchida, S. Itoh, S. Kaneko, and K. Hotta, ”High performance TFTs fabricated by XeCl excimer laser annealing of amorphous silicon thin films,” IEEE Trans. Electron Devices ED-36, 2868 (1989).
    [25] R. Ishihara, W. C. Yeh, T. Hattori and M. Matsumra,”Effects of light pulse duration on excimer-laser crystallization characteristics of silicon thin films,” Jpn. J. Appl. Phys. Pt.1 34, 1759 (1995).
    [26] E. Ibok and S. Garg, " A characterization of the effect of deposition temperature on polysilicon properties," J. Electrochem. Soc. 140, no. 10, (1994).
    [27] G. Randnoczi, A. Robertsson, H. T. G. Hentzell, S. F. Gong, and M. A. Pasras, “Al induced crystallization of a-Si," J. Appl. Phys. 69, 6394 (1991).
    [28] J. Stoemenos, J. Mcintosh, N. A. Economou, Y. K. Bhatnagar, P. A. Coxon, A. J. Lowe, M. G. Clark, '' Crystallization of amorphous silicon by reconstructive transformation utilizing gold," Appl. Phys. Lett. 58, 1196 (1991).
    [29] B. Bian, J. Yie, B. Li, Z. Wu, "Fractal formation in a-Si:H/Ag/a-Si:H films after annealing," J. Appl. Phys. 73, 7402 (1993).
    [30] C. Hayzeden and J. L. Batstone, "Silicide formation and silicide-mediated crystallization of nickel-implanted amorphous silicon thin films," J. Appl. Phys. 73, 8279 (1993).
    [31] Y. Kawazu, H. Kudo, S. Onari and T. Arai, " Low- Temperature Crystallization of Hydrogenated Amorphous Silicon Induced by Nickel Silicide Formation," Jap. J. Appl. Phys. 29, 2698 (1990).
    [32] S, W. Lee, Y. C. Jeon, and S. K. Joo, "Pd induced crystallization of amorphous Si thin films," Appl. Phys. Lett. 66, l671 (1995).
    [33] C. Hayzelden and J. L. Batstone ,” Silicide formation and silicide-mediated crystallization of nickel-implanted amorphous silicon thin films,” J. Appl. Phys.73, 8279 (1993.)
    [34] C. D. Lien, M. A. Nicolet and S. S. Lau, Phys. Status Solodo, A81, p.123, 1984. R. Kakkad, J. Smith, W. S. Lau, S. J. Fonash and R. Kerns, “Crystallized Si films by low-temperature rapid thermal annealing on amorphous silicon,” J. Appl. Phys. 65, 2069 (1989).
    [35] T. Hempel, O. Schoenfeld and F. Syrowatka,” Needle-like crystallization of Ni doped amporphous silicon thin films,” Sold State Communication 85, 921 (1993).
    [36] C. Hayzelden, J. L. Batstone and R. C. Cammaratta, “In situ transmission electron microscopy studies of silicide-mediated crystallization of amorphous silicon,” Appl. Phys. Lett. 60, 225 (1992).
    [37] C. V. Thompson, “Secondary grain growth of semiconductors: Theoretical aspects” J. Appl. Phys. 58, 763 (1985)
    [38] T. Yonehara, Henry I. Smith, C. V. Thompson, J. E. Palmer “Graphoepitaxy of Ge on SiO2 by solid-state surface-energy-driven grain growth” Appl. Phys. Lett. 45, 631 (1985).
    [39] C. V. Thompson, Henry I. Smith, “surface-energy-driven secondary grain growth in ultrathin (<100nm) films of silicon” Appl. Phys. Lett. 44, 603 (1984).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE