簡易檢索 / 詳目顯示

研究生: 林典育
Tien-Yu Lin
論文名稱: 以隨意散佈形成的無線感測器網路基於考慮在遮蔽效應的環境下之感測涵蓋範圍的研究
A Study of Sensing Coverage for Randomly Distributed Wireless Sensor Networks in Shadowed Environments
指導教授: 蔡育仁
Yuh-Ren Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 44
中文關鍵詞: 感測器涵蓋遮蔽效應隨意散佈無線
外文關鍵詞: Sensor, Coverage, Shadowing, Random, Distributed, Wireless
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文探討關於在無線感測器網路中,如何去計算涵蓋率。考慮我們把N個感測器以隨意一致性的方式佈置在一個大區域上,區域的面積假設是A,假設事件如果距離感測器一定範圍內、它可會被感測器所偵測到,而那個距離我們稱為感測半徑Rmax。對於在無線信號傳輸環境中,我們以最常用的路徑功率損失模型來決定感測半徑的大小;此外,因為信號在空氣中傳播會受到遮蔽物的影響,會使得接收端所收到的能量減少、而且根據遮蔽物的影響大小、收到的能量也會有很大的變動性,而遮蔽效應是無線信號傳輸一個無可避免的現象,所以在決定感測半徑時,我們也將遮蔽效應列入考量。因為感測器收到各個方向的信號、受到遮蔽物的影響都不太一樣,所以換一個角度,遮蔽效應會使得一個感測器它在四面八方的感測範圍都不一樣。
    在本研究中,分別考慮沒有遮蔽效應的環境、和有遮蔽效的環境,我們會決定出感測涵蓋率和一些系統參數的關係、像是感測器個數、區域面積、涵蓋半徑…等。此外,為了在同樣的資源下增加涵蓋率,我們將整個區域分成所多小區域,然後在各個小區域上分別以隨意一致性的方式佈置同樣數目的感測器,這樣的想法是為了使感測器的分佈更加均勻,達到改善涵蓋率的效果。除了隨意一致性的分佈的討論,我們也在Poisson分佈和二維Gaussian分佈下去探討涵蓋率的估計。對於Poisson分佈和隨意一致性分布,我們驗證出兩者間一些相似的地方;另外在二維Gaussian分佈下,我們以Poisson的分佈來近似一小區域上感測器的分佈,以此方式估算涵蓋率。


    Abstract i Contents ii 1 Introduction 1 2 System & Channel Models 4 2.1 System Model …………………………4 2.2 Sensing Signal Propagation Model …4 3 Determination of Sensing Coverage 8 3.1 Uniformly Random Distribution …………8 3.1.1 Non-shadowed Environment ……8 3.1.2 Shadowed Environment ……10 3.1.3 Deployment on Partitioned Area ………………………………12 3.2 Numerical Approximation by Poisson Point Process ………………………………14 3.2.1 Non-shadowed Environment ……14 3.2.2 Shadowed Environment ……15 3.3 Uniformly Random Distribution v.s. Poisson Point Process ……………………16 3.3.1 Non-shadowed Environment ……17 3.3.2 Shadowed Environment ……18 4 Coverage Determination under Bivariate Normal Distribution 19 4.1 System Model ………………………………19 4.2 Determination of Sensing Coverage ……20 4.2.1 Shadowed Environment ………21 4.2.2 Non-shadowed Environment ………22 4.3 Optimal Value of …………………………23 4.3.1 Non-shadowed Environment ……23 4.3.2 Shadowed Environment ……24 4.4 One-Sided Bivariate Normal Distribution ………………………………24 5 Discussions, Simulations & Numerical Results 26 5.1 Environmental Parameters and Simulation Setup ………………………………26 5.2 Accuracy Comparison for Uniformly Random Distribution ………………………27 5.2.1 Deployment on Un-partitioned Areas …………………………27 5.2.2 Deployment on -partitioned Areas …………………………29 5.2.3 Simulation Accuracy ……………30 5.3 Numerical Coverage Comparison among Uniformly Random Distribution and Poisson Point Process …………………………31 5.4 Analysis of Some Numerical Results for Deployment on n-partitioned Areas …33 5.4.1 Numerical Results ………………33 5.4.2 Proportion of Conservation of Sensor Nodes …………………………34 5.4.3 Comparisons of Sensing Coverage with Poisson Point Process ………36 5.5 Results Bivariate Normal Distribution 37 5.5.1 Accuracy Comparison ………………37 5.4.2 Optimal Value of Deployment Standard Deviation …………39 6 Conclusion and Future Works 42 Bibliography 43

    [1] S. Shakkottai, R. Srikant, and N. Shroff, “Unreliable Sensor Grids: Coverage, Connectivity, and Diameter,” in Proc. IEEE INFOCOM, vol. 2, pp. 1073-1083, April 2003.
    [2] K.Chakrabarty, S. S. Iyengar, and H. Qi, “Grid Coverage for Surveillance and Target Location in Distributed Sensor Networks,” IEEE Transactions on Computers, vol. 51, no. 12, pp. 1448-1453, Dec. 2002.
    [3] J. Lu and T. Suda, “Covrage-aware Self-scheduling in Sensor Networks,” in Proc. IEEE 18th Annual Workshop on Computer Communications, pp.117-123, 20-21 Oct. 2003.
    [4] S. Meguerdichdian, F. Koushanfar, M. Potkonjak, and M. Srivastava, “Coverage Problem in Wireless Ad-Hoc Sensor Networks,” in Proc. IEEE INFOCOM vol. 3, pp. 1380-1387, 22-26 April 2001.
    [5] X. Li, P. Wang, and O. Frieder, “Coverage in Wireless Ad Hoc Sensor Networks,” IEEE Transaction on Computers, vol. 52, no. 6, June 2003.
    [6] H. Zhang and J. C.Hou, “Maintaining Sensing Coverage and Connectivity in large Sensor Networks,” Technical Report UIUCDCS-R-2003-2351, Department of Computer Science, University of Illinois at Urbana-Champaign, June 2003.
    [7] B Liu and D. Towsley, “A study of the coverage of large-scale sensor networks,” in Proc. IEEE International Conference on Mobile Ad-hoc and Sensor Systems, pp. 475-483, 25-27 Oct. 2004.
    [8] A. Fanimokun and J. Frolik, “Effects of natural propagation environments on wireless sensor network coverage area,” Department of Electrical and Computer Engineering, Tennessee Tech Universwity.
    [9] P. Hall, Introduction to the Theory of Coverage Process. John Wiley and Sons, 1988.
    [10] G. L. Stuber, Principles of Mobile Communication, 2nd Edition. Boston, Kluwer Academic Publishers, 2001.
    [11] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless Sensor Networks: A Survey,” Computer Networks, vol. 38, pp. 393-422, 2002.
    [12] P. Gupta and P. R. Kumar, “Critical Power for Asymptotic Connectivity,” Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 1998.
    [13] F. Xue and P. R. Kumar, “The Number of Neighbors Needed for Connectivity of Wireless Networks,” Kluwer Academic Publishers, Wireless Networks 10, 169-181, 2004.
    [14] S. Ghahramani, Fundamentals of Probability with Stochastic Processes, 3rd Edition. Pearson Prentice Hall, 2005.
    [15] H. Stark and J.W. Woods, Probability and Random Processes with Application to Signal Processing, 3rd, Prentice Hall, 2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE