研究生: |
邱明淑 Chiu, Ming-Shu |
---|---|
論文名稱: |
室溫水溶液下快速合成具可調控粒徑大小硒化鉛奈米粒子及其尺寸效應光學性質 Fast and Room-Temperature Synthesis of Size-Tunable PbSe Nanocubes in Aqueous Solution and Their Size-Dependent Optical Properties |
指導教授: |
黃暄益
Huang, Hsuan-Yi |
口試委員: |
段興宇
Tuan, Hsing-Yu 徐雍鎣 Hsu, Yung-Jung |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 45 |
中文關鍵詞: | 硒化鉛 、奈米粒子 |
外文關鍵詞: | PbSe, nanoparticle |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在水溶液下,由於硒元素無法直接溶於水相中,所以需要更進一步的還原及處理,使得硒化合物目前無法在水相中被精確的控制其形貌及尺寸。因此,在本篇論文中,我們致力於在水相中發展出在室溫下快速合成硒化鉛奈米粒子並具有形貌及尺寸的控制。整個反應中,所加入反應物只有醋酸鉛、醋酸以及硒代硫酸钠,我們藉由調整醋酸所加入的量來有效的控制硒化鉛奈米粒子的大小,並深入探討其反應機制使我們能有效的調控硒化鉛奈米粒子形貌及尺寸。利用光催化反應了解到硒化鉛奈米粒子在紫外可見光區有高能階電子的躍遷,使得我們可以在紫外可見光區觀察到吸收峰。此外,藉由測量不同尺寸的硒化鉛的紫外可見光光譜,可以得知隨著硒化鉛奈米粒子的尺寸越大,其吸收峰會產生紅位移,因此我們可以了解到不同尺寸的硒化鉛具有明顯的尺寸光學效應。
Selenide sources generally cannot be dissolved in aqueous solution, so special preparation of selenium source is necessary for PbSe synthesis in an aqueous solution. Here we have developed a fast and room-temperature method to synthesize lead selenide (PbSe) nanocubes in aqueous solution. The PbSe nanocubes have sizes ranging from 13 nm to 121 nm by adjusting the amounts of acetic acid added. The formation mechanism has been considered to achieve particle size control systematically. Additionally, we conducted the photocatalytic experiment to realize there are absorption peaks in UV-vis region because of the transition into high-energy bands. With increasing PbSe particle size, their absorption bands red-shift progressively. It indicated that there are obviously size-dependent optical properties.
1. Huang, M. H.; Rej, S.; Hsu, S.-C. Chem. Commun. 2014, 50, 1634–1644.
2. Huang, M. H.; Naresh, G.; Chen, H.-S. ACS Appl. Mater. Interfaces 2018, 10, 4−15.
3. Huang, W. C.; Lyu, L. M.; Yang, Y. C.; Huang, M. H. J. Am. Chem. Soc. 2011, 134, 1261–1267.
4. Kuo, C. H.; Huang, M. H. Nano Today 2010, 5, 106–116.
5. Chen, Y. J.; Chiang, Y. W.; Huang, M. H. ACS Appl. Mater. Interfaces 2016, 8, 19672–19679.
6. Lyu, L. M.; Huang, M. H. J. Phys. Chem. C 2011, 115, 17768–17773.
7. Hsieh, M. S.; Su, H. J.; Hsieh, P. L.; Chiang, Y.-W.; Huang, M. H. ACS Appl. Mater. Interfaces 2017, 9, 39086–39093.
8. Yuan, G. Z.; Hsia, C. F.; Lin, Z. W.; Chiang, C.; Chiang, Y. W.; Huang, M. H. Small 2016, 12, 3530–3534
9. Tan, C.-S.; Chen, H.-S.; Chiu, C.-Y.; Wu, S.-C.; Chen, L.-J.; Huang, M. H. Chem. Mater. 2016, 28, 1574–1580.
10. Tan, C.-S.; Hsu, S.-C.; Ke, W.-H.; Chen, L.-J.; Huang, M. H. Nano Lett. 2015, 15, 2155–2160.
11. Ke, W. H.; Hsia, C. F.; Chen, Y. J.; Huang, M. H. Small 2016, 12, 3530–3534.
12. Wang H. J.; Yang K. H.; Hsu S. C.; Huang, M. H. Nanoscale, 2016, 8, 965–972.
13. Lifshitz, E.; Bashouti, M.; Kloper, V.; Kigel, A.; Eisen, M.; Berger, S. Nano Lett. 2003, 3, 857–862.
14. Wang, C.; Zhang, G.; Fan, S.; Li, Y. J. Phys. Chem. Solids 2001, 62, 1957–1960.
15. Gokarna, A.; Jun, K.; Khanna, P.; Baeg, J.; Seok, S.-I. Bull. Korean Chem. Soc. 2005, 26, 1803.
16. Yu, W. W.; Falkner, J. C.; Shih, B. S.; Colvin, V. L. Chem. Mater. 2004, 16, 3318–3322.
17. Lu, W.; Fang, J.; Ding, Y.; Wang, Z. L. J. Phys. Chem. B 2005, 109, 19219–19222.
18. Li, H.; Chen, D.; Li, L.; Tang, F.; Zhang, L.; Ren, J. CrystEngComm 2010, 12, 1127–1133.
19. Peng, Z.; Liu, M.; Yu, C.; Chai, Z.; Zhang, H.; Wang, C. Nanoscale 2010, 2, 697–699.
20. Houtepen, A. J.; Koole, R.; Vanmaekelbergh, D.; Meeldijk, J.; Hickey, S. G. J. Am. Chem. Soc. 2006, 128, 6792–6793.
21. Bakshi, M. S.; Thakur, P.; Khullar, P.; Kaur, G.; Banipal, T. S. Cryst. Growth Des. 2010, 10, 1813–1822.
22. Cui, R.; Gu, Y.-P.; Zhang, Z.-L.; Xie, Z.-X.; Tian, Z.-Q.; Pang, D.-W. J. Mater. Chem. 2012, 22, 3713–3716.
23. Primera-Pedrozo, O. M.; Arslan, Z.; Rasulev, B.; Leszczynski, J. Nanoscale 2012, 4, 1312–1320.
24. Wang, X.; Li, K.; Dong, Y.; Jiang, K. Cryst. Res. Technol. 2010, 45, 94–98.
25. Gharibe, S.; Afshar, S.; Vafayi, L. Bull. Chem. Soc. Ethiop. 2014, 28, 37–44.
26. Peng, Q.; Dong, Y.; Deng, Z.; Li, Y. Inorg. Chem. 2002, 41, 5249–5254.
27. Shahi, A.; Pandey, B.; Singh, B.; Gopal, R. Adv. Nat. Sci.: Nanosci. Nanotech. 2016, 7, 035010.
28. Wang, Y.; Yang, K.; Pan, H.; Liu, S.; Zhou, L. Micro Nano Lett. 2012, 7, 889–891.
29. Hodlur, R.; Rabinal, M. Chem. Eng. J. 2014, 244, 82–88.
30. Khan, Z. M.; Khan, S. A.; Zulfequar, M. Mater. Sci. Semicond. Process. 2017, 57, 190–196.
31. Wang, Y.; Mo, Y.; Zhou, L. Spectrochim. Acta A 2011, 79, 1311–1315.
32. Liu, F.-C.; Chen, Y.-M.; Lin, J.-H.; Tseng, W.-L. J. Colloid Interface Sci. 2009, 337, 414–419.
33. Mazing, D.; Matyushkin, L.; Aleksandrova, O.; Mikhailov, I.; Moshnikov, V.; Tarasov, S. J. Phys. Conf. Ser. 2014, 572, 012028.
34. Deshpande, M.; Chaki, S.; Patel, N.; Bhatt, S.; Soni, B. J. Nano- Electron. Phys. 2011, 3, 193.
35. Huang, P.; Kong, Y.; Li, Z.; Gao, F.; Cui, D. Nanoscale Res. Lett. 2010, 5, 949.
36. Wang, H.; Xu, S.; Zhao, X.-N.; Zhu, J.-J.; Xin, X.-Q. Mater. Sci. Eng. B 2002, 96, 60–64.
37. Xu, S.; Wang, H.; Zhu, J.-J.; Chen, H.-Y. J. Cryst. Growth 2002, 234, 263–266.
38. Li, Y.; Li, Q.; Wu, H.; Huang, C.; Lin, H.; Qin, L. Nanoparticle Res. 2015, 17, 362.
39. Zhao, N.; Qi, L. Adv. Mater. 2006, 18, 359–362.