研究生: |
朱立岡 Li-Kang Chu |
---|---|
論文名稱: |
利用步進式掃瞄時間解析傅氏轉換紅外光譜法研究ClSO、ClCS、CH3SO2及C6H5SO2等自由基之紅外吸收光譜 |
指導教授: |
李遠鵬
Yuan-Pern Lee 游靜惠 Chin-Hui Yu |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 167 |
中文關鍵詞: | 紅外光 、步進式 |
外文關鍵詞: | ClSO, ClCS, CH3SO2, C6H5SO2 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
吾人利用步進式時域解析傅氏轉換紅外吸收光譜法,觀測到Cl2SO於248 nm光解後的產物ClSO於1162.9 cm–1的S=O伸張振動模(n1)的吸收。依據微波光譜獲得振動基態轉動常數及理論計算之v1 = 1與v1 = 0振動態的轉動常數比值,並利用分子光譜程式SpecView模擬ClSO的S=O伸展振動模的紅外吸收光譜;其具有a與b型躍遷1 : 0.35混成的組合,所得之光譜與實驗觀測極為一致。
利用相同方法,觀測Cl2CS於248 nm光解後的產物ClCS,其C=S伸展振動模之吸收位於1194.5 cm–1。此結果與理論計算B3P86/aug-cc-pVTZ預測之波數於1245 cm–1以及於Ar間質中觀測到於1189.3 cm–1的結果一致。由預測的偶極矩導數向量指出此振動模進行a型躍遷,但由於轉動常數於激態與基態的差異,僅具有明顯的R、P分枝的結構,Q分枝隱沒於P分枝中,而實驗所得光譜之形狀和模擬光譜則相當的吻合。此外,經248 nm光解Cl2CS除了獲得ClCS,亦可於光解瞬間得到CS,並於反應後期觀測到二次反應產物CS2。
以248 nm激發CH3I/SO2/CO2的混合樣品,瞬態產物CH3SO2的SO2對稱與非對稱伸展振動模之吸收譜帶分別於1076及1280 cm–1。此結果與理論計算B3P86/aug-cc-pVTZ預測之波數及相對紅外吸收強度一致。經由觀測後期的時間解析光譜,吾人亦可指派CH3SO2與I形成的產物CH3SO2I,其SO2對稱伸展振動模的波數位在1159 cm–1。而吾人所假設簡單的動力學模型,得估計CH3+SO2的雙分子反應速率常數k1II = (2.6 ± 0.5)´10-13 cm3 molecule-1 s-1。
以248 nm激發五種流動氣體樣品C6H5SO2Cl/N2、C6H5Br/SO2/N2、C6H5Cl/SO2/N2、C6H5Br/SO2/CO2及C6H5Cl/SO2/CO2,將1087.7及1278.2 cm–1偵測到的譜帶指派為瞬態產物C6H5SO2的SO2對稱與非對稱伸展振動模之吸收。此結果與理論計算B3P86/aug-cc-pVTZ預測之波數及相對紅外吸收強度一致。而模擬光譜亦支持SO2對稱伸展振動模由a型與少部分c型躍遷所主導,而SO2非對稱伸展振動模由b型躍遷所主導。在C6H5 + SO2以N2當焠息體的實驗中,除了C6H5SO2被觀測到外,於3607、1400及1190 cm–1的吸收譜帶暫時指派為C6H4OSOH的吸收。此外,在以248 nm激發C6H5Br/SO2/CO2之實驗中,觀測到於1396及1181 cm–1的譜帶在反應後期生成,吾人將其分別指派為C6H5SO2Br的SO2非對稱與對稱伸展振動模之吸收。在以248 nm激發C6H5Cl/SO2/N2與C6H5SO2Cl/N2的光解實驗中,亦觀測到C6H5SO2Cl於反應後期生成。吾人亦估計出C6H5 + SO2的雙分子反應速率常數k6II = (4.6 ± 0.7)´10-12 cm3 molecule-1 s-1。
[01] T. S. Bates, B. K. Lamb, A. Guenther, J. Dignon, and R. E. Stoiber, J. Atmos. Chem. 14, 315 (1992).
[02] R. J. Charlson, J. E. Lovelock, M. O. Andreae, and S. G. Warren, Nature 326, 655 (1987).
[03] S. B. Barone, A. A. Turnipseed, and A. R. Ravishankara, Faraday Discuss. 100, 39 (1995).
[04] D. Borissenko, A. Kukui, G. Laverdet, and G. Le Bras, J. Phys. Chem. A 107, 1155 (2003).
[05] A. Kukui, V. Bossoutrot, G. Laverdet, and G. Le Bras, J. Phys. Chem. A 104, 935 (2000).
[06] A. Ray, I. Vassalli, G. Laverdet, and G. Le Bras, J. Phys. Chem. 100, 8895 (1996).
[07] N. R. Jensen, J. Hjorth, C. Lohse, H. Skov, and G. Restelll, J. Atmos. Chem. 14, 95 (1992).
[08] A. A. Turnipseed, S. B. Barone, A. R. Ravishankara, J. Phys. Chem. 96, 7502 (1992).
[09] S. P. Urbanski, R. E. Stickel, and P. H. Wine, J. Phys. Chem. A 102, 10522 (1998).
[10] V. Riffault, Y. Bedjanian, and G. Le Bras, J. Phys. Chem. A 107, 5404 (2003).
[11] T. E. Eriksen and J. Lind, Radiochem. Radioanal. Lett. 25, 11 (1976).
[12] C. Chatgilialoglu, D. Griller, and M. Guerra, J. Phys. Chem. 91, 3747 (1987).
[13] A. G. Davies, B. P. Roberts, and B. R. Sanderson, J. Chem. Soc., Perkin Trans. II, 626 (1973).
[14] C. Chatgilialoglu, B. C. Gilbert, C. M. Kirk, and R. O. C. Norman, J. Chem. Soc., Perkin Trans. II, 1084 (1979).
[15] M. D. Sevilla, D. Becker, and M. Yan, Int. J. Radiat. Biol. 57, 65 (1990).
[16] C. Chatgilialoglu, B. C. Gilbert, and R. O. C. Norman, J. Chem. Soc., Perkin Trans. II, 1429 (1980).
[17] A. J. Frank and F. Turecek, J. Phys. Chem. A 103, 5348 (1999).
[18] R. J. Boyd, A. Gupta, R. F. Langler, S. P. Lownie, and J. A. Pincock, Can. J. Chem. 58, 331 (1980).
[19] S. R. Davis, J. Phys. Chem. 97, 7535 (1993).
[20] M. L. McKee, Chem. Phys. Lett. 211, 643 (1993).
[21] S. M. Resende and F. R. Ornellas, J. Braz. Chem. Soc. 13, 565 (2002).
[22] O. V. Rattigan, D. E. Shallcross, and R. A. Cox, J. Chem. Soc., Faraday Trans. 93, 2839 (1997).
[23] R. W. Kilb, J. Chem. Phys. 23, 1736 (1955).
[24] M. H. Sirvetz, J. Chem. Phys. 19, 938 (1951).
[25] M. Bahou, S.-F. Chen, and Y.-P. Lee, J. Phys. Chem. A 104, 3613 (2000).
[26] R. R. Williams, Jr. and R. A. Ogg, Jr., J. Chem. Phys. 15, 696 (1947).
[27] W. B. DeMore, S. P. Sander, D. M. Golden, R. F. Hampson, M. J. Kurylo, C. J. Howard, A. R. Ravishankara, C. E. Kolb, M. J. Molina, Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling; JPL Publication 97-4; Jet Propulsion Laboratory: Pasadena, CA, 1997.
[28] L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, J. Quant. Spectrosc. Radiat. Transfer 60, 665 (1998).
[29] V. Stakhursky and T. A. Miller, SpecView: Simulation and Fitting of Rotational Structure of Electronic and Vibronic Bands, 56th OSU International Symposium on Molecular Spectroscopy, Columbus, Ohio, 2001.
[30] M. E. Jacox, Vibrational and Electronic Energy Levels of Polyatomic Transient Molecules in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Eds. P.J. Linstrom and W.G. Mallard, June 2005, National Institute of Standards and Technology, Gaithersburg MD, 20899 (http://webbook.nist.gov).
[31] G. Geiseler and B. Nagel, J. Mol. Struct. 16, 79 (1973).
[32] B. Ballesteros, N. R. Jensen, and J. Hjorth, J. Atmos. Chem. 43, 135 (2002).
[33] F. C. James, J. A. Kerr, and J. P. Simons, J. Chem. Soc., Faraday Trans. 1, 69, 2124 (1973).