簡易檢索 / 詳目顯示

研究生: 邵翊綱
Shao, Yi-Kung
論文名稱: 奈米結構對矽晶片表面缺陷造成應力集中現象之影響
Effect of Nano Structure to Stress Concentration Caused by Chip Surface Defect
指導教授: 葉孟考
Yeh, Meng-Kao
口試委員: 張禎元
Chang, Jen-Yuan
蔣長榮
Chiang, Chun-Ron
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 88
中文關鍵詞: 奈米結構應力集中矽晶片
外文關鍵詞: nano-structure, stress concentration, silicon chip
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   太陽能矽晶片目前已普遍被使用,大量的使用以及逐漸普及化造成矽材料的短缺,使得矽晶片的薄型化越來越重要。薄型化的過程中以及薄試片之加工過程中都容易造成試片表面之缺陷,在缺陷處容易有應力集中之現象,此缺陷也成為試片破裂之起始點。本研究利用有限單元分析軟體,首先探討奈米孔洞結構對於表面缺陷處應力集中現象之影響,再對不同形貌之奈米孔洞結構以及不同表面缺陷分別做不同參數之模擬分析。由於本研究中著重在探討缺陷附近之應力變化情形,因此採用局部法,只在缺陷附近建立奈米結構來模擬缺陷附近之情形。另外以銀當作正電極、鋁當作負電極建立太陽能電池疊層板結構,探討不同形式的疊層板結構是否對奈米結構的效果有所影響。實驗方面,我們可以由四點彎矩實驗中看出奈米結構的效果,並且由實驗結果去對分析結果作驗證。期望本研究之結果能在矽晶片薄型化之相關製程上提供參考。


    Increasing uses of silicon chip in solar cell makes the thinning of silicon chip necessary. Surface defects are easily induced on chip during the thinning and machining processes. The stress concentration resulted from defects would be the source of crack and failure of silicon chips.
    In this research, the finite element analysis was first used to investigate the effect of nano-structure on stress concentration caused by surface defect with different parameters for silicon chip. Since we focused on the stress distribution near the defect, nano-structures were introduced in the nearby area of defect in the analysis. The four-point bending tests of silicon chip were also performed to access the effect of nano-structure on the strength of silicon chip and compared with the results from simulation. For the solar cell models, positive silver and negative aluminum electrodes were added, and the effect of nano-structure with different patterns of solar cell were discussed. The results obtained in this research can provide some useful suggestions in the process of thinning silicon chip.

    目 錄 摘要… 1 Abstract 2 目 錄.. 3 表 目 錄 5 圖 目 錄 6 第一章 緒論 9 1.1研究背景 9 1.2文獻回顧 9 1.2.1矽材料的機械性質與其強度下降之原因 9 1.2.2在矽表面製作奈米孔洞結構的優點 10 1.2.3強化機制回顧 11 1.2.4矽的強化方式 12 1.3研究主題 13 第二章 有限單元分析 15 2.1有限單元分析模型建立 15 2.1.1單元選取 16 2.1.2材料參數之設定 16 2.1.3試片模型幾何外型之建立 16 2.1.4結構網格化 19 2.1.5結構邊界條件與負載之設定 20 2.1.6網格密度測試 21 2.1.7分析求解與結果輸出 22 2.2有限單元應力分析 22 第三章 破裂力學理論分析 24 3.1裂縫尖端應力場 24 3.2應力集中因子 25 3.3裂縫幾何形狀與應力集中因子之關係 25 3.4 von Mises破壞準則 26 3.5最小平方法 26 第四章 實驗方法與步驟 28 4.1實驗儀器與實驗試片 28 4.1.1拉伸試驗機 28 4.1.2微拉伸試驗機 28 4.1.3實驗用矽晶片 29 4.2實驗方法 29 4.2.1拉伸試驗 29 4.2.2四點彎矩實驗 30 第五章 結果與討論 32 5.1實驗結果與模擬準確性判斷 32 5.1.1拉伸試驗結果 33 5.1.2四點彎矩試驗結果 34 5.1.3模擬準確性判斷 35 5.2表面蝕刻奈米結構對於裂縫處等效應力之影響 36 5.3不同之奈米結構間距對表面等效應力分佈之影響 36 5.4不同之奈米結構深度對表面等效應力分佈之影響 37 5.5不同之裂縫深度對裂縫處應力變化之影響 38 5.6太陽能疊層板結構應力分析 40 5.6.1表面無裂縫之疊層板結構表面應力分析 40 5.6.2表面有裂縫之疊層板結構表面應力分析 41 第六章 結論 43 參考文獻 45   表 目 錄 表1.1 材料性質列表 49 表2.1 網格密度測試結果 49 表5.1 表面拋光矽晶片之撓曲模數 50 表5.2 表面蝕刻奈米結構矽晶片之撓曲模數 50 表5.3 表面拋光矽晶片之破壞荷重 51 表5.4 蝕刻奈米結構矽晶片之破壞荷重 51 表5.5 模擬準確性驗證(給予壓縮位移) 52 表5.6 模擬準確性驗證(給予荷重) 52 表5.7 裂縫下方之等效應力值與其應力集中因子(三點) 53 表5.8 裂縫下方之等效應力值與其應力集中因子(四點) 53 表5.9 不同孔洞間距裂縫下方應力以及其應力集中因子(三點) 54 表5.10 不同孔洞間距裂縫下方應力以及其應力集中因子(四點) 54 表5.11 不同奈米結構深度下裂縫處應力值與應力集中因子(三點) 55 表5.12 不同奈米結構深度下裂縫處應力值與應力集中因子(四點) 55 表5.13 無奈米結構試片與有奈米結構試片之最大等效應力 56   圖 目 錄 圖2.1 ANSYS模擬分析流程 57 圖2.2 SOLID 45單元示意圖 58 圖2.3 PLANE 42單元示意圖 58 圖2.4 部分奈米結構區域示意圖 59 圖2.5 自行設定之太陽能晶片中矽基板之尺寸示意圖 59 圖2.6 奈米孔洞結構之SEM圖[48] 60 圖2.7 奈米結構模型示意圖 60 圖2.8 奈米結構深度改變示意圖 61 圖2.9 裂縫深度改變示意圖 61 圖2.10 無裂縫疊層板結構交錯排列示意圖 62 圖2.11 有裂縫疊層板結構交錯排列示意圖 62 圖2.12 控制網格化之流程圖 63 圖2.13 表面覆蓋奈米孔洞結構之模型網格圖 63 圖2.14 疊層板結構部分網格圖 64 圖2.15 三點彎矩實驗示意圖 64 圖2.16 三點彎矩邊界條件與負載之設定示意圖 65 圖2.17 四點彎矩實驗示意圖 65 圖2.18 四點彎矩邊界條件與負載之設定示意圖 66 圖2.19 網格密度測試裂縫正下方等效應力變化趨勢圖 66 圖2.20 網格密度測試裂縫正下方X,Y方向應力變化趨勢圖 67 圖3.1 裂縫破裂之型式 67 圖3.2 最小平方法示意圖 68 圖4.1 拉伸試驗機 68 圖4.2 微拉伸試驗機 69 圖4.3 四吋矽晶圓(左為正常晶圓,右為表面蝕刻奈米結構之晶圓) 69 圖4.4 表面奈米結構形貌圖 70 圖4.5 表面奈米結構放大圖 70 圖4.6 拉伸試片 71 圖4.7 矽晶片試片拉伸試驗架設圖 71 圖4.8 彎曲試片(上為正常試片,下為蝕刻奈米結構之試片) 72 圖4.9 矽晶片試片彎曲試驗架設圖 72 圖5.1 矽晶片試片拉伸斷裂圖 73 圖5.2 拉伸試驗位移荷重曲線 73 圖5.3 拉伸試驗應力應變曲線 74 圖5.4 拉伸試驗軸向與橫向應變曲線 74 圖5.5 四點彎矩中央圓弧段示意圖 75 圖5.6 表面無奈米結構試片之彎曲試驗應力應變曲線 75 圖5.7 表面有奈米結構試片之彎曲試驗應力應變曲線 76 圖5.8 表面有奈米結構與無奈米結構試片之彎曲試驗應力應變曲線 76 圖5.9 位移荷重曲線(模擬V.S實驗) 77 圖5.10 表面無奈米結構之試片裂縫附近等效應力分佈圖(三點) 77 圖5.11 表面無奈米結構之試片裂縫附近等效應力分佈圖(四點) 78 圖5.12 表面有奈米結構之試片裂縫附近等效應力分佈圖(三點) 78 圖5.13 表面有奈米結構之試片裂縫附近等效應力分佈圖(四點) 79 圖5.14 三點彎矩與四點彎矩不同孔洞間距時裂縫下方應力變化圖 79 圖5.15 不同孔洞間距之試片模型裂縫附近應力變化圖(三點) 80 圖5.16 不同孔洞間距之試片模型裂縫附近應力變化圖(四點) 80 圖5.17 奈米孔洞結構深度(0.4 μm)小於裂縫深度(0.52 μm)之試片模型等效應力分佈圖 81 圖5.18 奈米孔洞結構深度(0.52 μm)等於裂縫深度(0.52 μm)之試片模型等效應力分佈圖 81 圖5.19 奈米孔洞結構深度(0.6 μm)大於裂縫深度(0.52 μm)之試片模型等效應力分佈圖 82 圖5.20 不同孔洞深度之試片模型裂縫附近應力變化圖(三點) 82 圖5.21 不同孔洞深度之試片模型裂縫附近應力變化圖(四點) 83 圖5.22 不同奈米結構深度下三點彎矩與四點彎矩裂縫處之應力比較 83 圖5.23 無奈米孔洞結構與有奈米孔洞結構之試片模型在不同裂縫深度下試片之最大等效應力變化圖 84 圖5.24 不同裂縫深度下裂縫處等效應力差距變化圖 84 圖5.25 不同裂縫深度下裂縫處等效應力減少百分比 85 圖5.26 無裂縫含奈米結構模型應力最大處 85 圖5.27 單一奈米結構區域應力分布趨勢圖(表面無裂縫) 86 圖5.28 不同間距下有奈米結構與無奈米結構模型裂縫處應力之比較 86 圖5.29 不同裂縫深度裂縫正下方與交界處應力值比較圖 87 圖5.30 裂縫深度0.7 μm疊層板結構含奈米結構與無奈米結構兩種模型深度0.4 μm處(奈米結構深度)之應力比較 87 圖5.31 裂縫深度0.7 μm疊層板結構含奈米結構與無奈米結構兩種模型表面應力(含裂縫處)比較 88

    B. Yang and X. M. Chen, “Alumina Ceramics Toughened by a Piezoelectric Secondary Phase, ” Journal of the European Ceramic Socitety, Vol. 20, pp. 1687-1690, 2000.
    C. Wilson, A. Ormeggi and M. Narbutovskih, “Fracture Testing of Silicon Microcantilever Beams, ” Journal of Applied Physics, Vol. 79, No. 5, pp. 2386-2393, 1996.
    J. Lee, N. Lakshminarayan, S. Dhungel, K. Kim and J. Yi, “Optimization of Fabrication Process of High-Efficiency and Low-Cost Crystalline Silicon Solar Cell for Industrial Applications, ” Solar Energy Materials and Solar Cells, Vol. 93 pp. 256-261, 2009.
    C. Sun, W. Fan, C. Cheng, C. Lin and K. Huang, “Templated Fabrication of Large Area Subwavelength Antireflection Gratings on Silicon, ” Applied Physics Letters, Vol. 91 pp. 231105, 2007.
    H. Chen, W. Fan, C. Chen, C. Lin and K. Huang, “Fabrication of Texturing Antireflection Structures in Solar Cells by Using the Defocusing Exposure in Optical Lithography, ” Journal of The Electrochemical Society, Vol. 153, pp. G802-G806, 2006.
    Z. Xi, D. Yang, W. Dan, C. Jun, X. Li and D. Que, “Texturization of Cast Multicrystalline Silicon for Solar Cells, ” Semiconductor Science and Technology, Vol. 19, pp. 485-489, 2004.
    E Vazsonyi, K. De Clercq, R. Einhaus, E. Van Kerschaver, K. Said, J. Poortmans, J. Szlufcik and. Mijs, “Improved Anisotropic Etching Process for Industrial Texturing of Silicon Solar Cells,” Sol Energ Mater Sol Cells, Vol. 57, pp. 179-188, 1999.
    W. Guter, J. Schone, S. Philipps, M.Steiner, G. Siefer, A.Wekkeli, E. Welser, E. Oliva, A. Bett and F. Dimroth, “Current-matched Triple-junction Solar Cell Reaching 41.1% Conversion Efficiency Under Concentrated Sunlight,” Applied Physics Letters, Vol. 94, pp. 223504, 2009.
    K.Munzer, K. Holderman, R Schlosser and S. Sterk, “Thin Monocrystalline Silicon Solar Cells,” IEEE Transactions on Electron Devices, Vol. 46, No. 10, pp. 2055-2061, 1999.
    T. Yi, L. Li and C. Kim, “Microscale Material Testing of Single Crystalline Silicon: Process Effects on Surface Morphology and Tensile Strength,” Sensors & Actuators: A. Physical, Vol. 83, pp. 172-178, 2000.
    K. Chen, A. Ayon and S. Spearing, “Controlling and Testing the Fracture Strength of Silicon on the Mesoscale,” Journal of Electronic Packaging, Vol. 83, pp. 1476-1484, 2000.
    N. McLellan, N. Fan, S. Liu K. Lau and J. Wu, “Effects of Wafer Thinning Condition on the Roughness, Morphology and Fracture Strength of Silicon Die,” Journal of Electronic Packaging, Vol. 126, pp. 110-114, 2004.
    H Jiun, I. Ahmad, A. Jalar and G. Omar, “Effect of Wafer Thinning Methods Towards Fracture Strength and Topography of Silicon Die,” Microelectronics Reliability, Vol. 46, pp. 836-845, 2006.
    J. Xu, J. Luo, L. Wang and X. Lu, “The Crystallographic Change in Sub-surface Layer of the Silicon Single Crystal Polished by Chemical Mechanical Polishing,” Tribology International, Vol. 40, pp. 285-289, 2007.
    Y. Tian, L. Zhou, J. Shimizu, Y. Tashrio and R. Kang, “Elimination of Surface Scratch/Texture on the Surface of Single Crystal Si Substrate in Chemo-mechanical Grinding (CMG) Process,” Applied Surface Science, Vol. 255, pp. 4205-4211, 2009.
    D. Y. Khang, H. Q. Jiang, Y. Huang and J. A. Rogers, ”A Stretchable Form of Single-crystal Silicon for High-performance Electronics on Rubber Substrates,” Science, Vol. 311, pp. 208-212, 2006.
    D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Z. Song, Y. G. Y. Huang, Z. J. Liu, C. Lu and J. A. Rogers, ”Stretchable and Foldable Silicon Integrated Circuits,” Science, Vol. 320, pp. 507-511, 2008.
    P. Vukusic and J. R. Sambles, “Photonic Structure in Biology,” Nature, Vol. 424, pp.852-855, 2003.
    A. R. Parker, R. C. McPhedran, D. R. McKenzie, L. C. Botten and N. A. P. Nicorovici, “Photonic Engineering – Aphrodite’s Iridescence,” Nature, Vol. 409, pp. 36-37, 2001.
    A. Sweeney, C. Jiggins and S. Johnsen, “Insect Communication: Polarized Light as a Butterfly Mating Signal,” Nature, Vol. 423, pp. 31-32, 2003.
    P. Vukusic, B.Hallam and J. Noyes, ”Brilliant Whiteness in Ultrathin Beetle Scales,” Science, Vol. 315, pp. 348-348, 2007.
    R. Blossey, “Self-cleaning Surfaces – Virtual Realities,” Nature Materials, Vol. 2, pp. 301-306, 2003.
    A. R. Parker and C. R. Lawrence, “Water Capture by a Desert Beetle,” Nature, Vol. 414, pp. 33-34, 2001.
    C. Sanchez, H. Arribart and M. M. G. Guille, “Biomimetism and Bioinspiration as Tools for the Design of Innovative Materials and Systems,” Nature Materials, Vol. 4, pp. 277-288, 2005.
    G. E. Fantner, T. Hassenkam, J. H. Kindt, J. C. Weaver, H. Birkedal, L. Pechenik, J. A. Cutroni, G. A. G. Cidade, G. D. Stucky, D. E. Morse and P. K. Hansma , “Sacrificial Bonds and Hidden Length Dissipate Energy as Mineralized Fibrils Separate During Bone Fracture,” Nature Materials, Vol. 4, pp. 612-616, 2005.
    G. Mayer, “Rigid Biological Systems as Models for Synthetic Composites,” Science, Vol. 310, pp. 1144-1147, 2005.
    P.Podsiadlo, A. K. Kaushik, E. M. Arruda, A. M. Waas, B. S. Shim, J. D. Xu, H. Nandivada, B. G. Pμmplin, J. Lahann, A. Ramamoorthy and N. A. Kotov, “Ultrastrong and Stiff Layered Polymer Nanocomposites,” Science, Vol. 318, pp. 80-83, 2007.
    A. Rinaldi, “Naturally better – Science and Technology Are Looking to Nature’s Successful Designs for Inspiration,” Embo Reports, Vol. 8, pp. 995-999, 2007.
    G. Y. Xie, G. M. Zhang, F. Liu and S. C. Mu, “The Fabrication of Subwavelength Anti-reflective Nanostructures Using a Bio-template,” Nanotechnology, Vol. 19, pp. 095605-1-095605-5, 2008.
    F. Song, K. L. Lee, A. K. Soh, F. Zhu and Y. L. Bai, “Experimental Studies of the Material Properties of the Forewing of Cicada (Homoptera, Cicadidae),” Journal of Experimental Biology, Vol. 207, pp. 3035-3042, 2004.
    P. R. Stoddart, P. J. Cadusch, T. M. Boyce, R. M. Erasmus and J. D. Comins, “Optical Properties of Chitin: Surface-enhanced Raman Scattering Substrates Based on Antireflection Structures on Cicada Wings,” Nanotechnology, Vol. 17, pp. 680-686, 2006.
    X. J. Feng and L. Jiang, “Design and Creation of Superwetting/Antiwetting Surfaces,” Advanced Materials, Vol. 18, pp. 3063-3078, 2006.
    T. L. Sun, L. Feng, X. F. Gao and L. Jiang, “Bioinspired Surfaces With Special Wettability,” Accounts of Chemical Research, Vol. 38, pp. 644-652, 2005.
    P. Vukusic and J. Sambles, “Photonic Structures in Biology,” Nature, Vol. 424, pp. 852-855, 2003.
    D. William, Fundamentals of Materials Science and Engineering: Wiley New York, 2001.
    S. Zhang, D. Sun, Y. Q. Fu and H. J. Du, “Toughening of Hard Nanostructural Thin Films: a Critical Review,” Surface & Coatings Technology, Vol. 198, pp. 2-8, 2005.
    D. Kovar, M. D. Thouless and J. W. Halloran, “Crack Deflection and Propagation in Layered Silicon Nitride Boron Nitride Ceramics,” Journal of the American Ceramic Society, Vol. 81, pp. 1004-1012, 1998.
    R. O. Ritchie, “Mechanisms of Fatigue-crack Propagation in Ductile and Brittle Solids,” International Journal of Fracture,” Vol. 100, pp. 55-83, 1999.
    A. G. Evans, “Perspective on the Development of High-Toughness Ceramics,” Journal of the American Ceramic Society, Vol. 73, pp. 187-206, 1990.
    Z. Xia, L. Riester, W. A. Curtin, H. Li, B. W. Sheldon, J. Liang, B. Chang and J. M. Xu, “Direct Observation of Toughening Mechanisms in Carbon Nanotube Ceramic Matrix Composites,” Acta Materialia, Vol. 52, pp. 931-944, 2004.
    Q. S. Ma, Z. H. Chen, W. W. Zheng and H. F. Hu, “Processing and Characterization of Three-dimensional Carbon Fiber-reinforced Si-O-C Composites Via Precursor Pyrolysis,” Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, Vol. 352, pp. 212-216, 2003.
    C. T. Huang and J. Yeh, “Stress Relaxation of V-shaped Notch on Single Crystal Silicon Using Nanoholes,” National Tsing Hua University Master thesis, 2009.
    ANSYS Release 12.1, ANSYS, Inc., PA, 2010.
    R. D. Cook, D. S. Malkus, M. E. Plesha and R. J. Witt, Concepts and Applications of Finite Element Analysis, 4th ed., Wiley, Danvers, 2002.
    L. J. Segerlind, Applied Finite Element Analysis, 2nd, Wiley, New York, 1984.
    ANSYS User’s Manual, ANSYS Inc.
    康淵,陳信吉,ANSYS入門,全華科技圖書股份有限公司,台北,2003。
    陳其男,仿高砂熊蟬的翅膀奈米結構提升單晶矽的機械強度,博士論文,國立清華大學電子工程研究所,新竹,台灣,2008。
    D. Broek 著,陳文華、張士欽譯,《基本工程破裂力學 第四版 Elementary Engineering Fracture Mechanics 4^th ed.》,國立編譯館出版,中華民國八十四年十月出版。
    W. Pilkey, Peterson’s Stress Concentration Factors:Wiley-Interscience, New York, 1997.
    C. R. Chiang, “On Stress Cocentration Factors in Orthotropic Materials,” Journal of the Chinese Institute of Engineers, Vol. 22, No. 3, pp. 301-305, 1999.
    ASTM E8/E8M-11, “Standard Test Methods for Tension Testing of Metallic Materials,” Annual Book of ASTM Standards, Vol. 3.01, 2013.
    ASTM E855-90, “Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading,” Annual Book of ASTM Standards, Vol. 3.01, 2013.
    Matthew A. Hopcroft, William D. Nix, and Thomas W. Kenny, “What is the Young’s Modulus of Silicon,” Journal of Microelectromechanical Systems, Vol. 19, no. 2, pp. 229-238, April 2010.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE