研究生: |
邵翊綱 Shao, Yi-Kung |
---|---|
論文名稱: |
奈米結構對矽晶片表面缺陷造成應力集中現象之影響 Effect of Nano Structure to Stress Concentration Caused by Chip Surface Defect |
指導教授: |
葉孟考
Yeh, Meng-Kao |
口試委員: |
張禎元
Chang, Jen-Yuan 蔣長榮 Chiang, Chun-Ron |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 88 |
中文關鍵詞: | 奈米結構 、應力集中 、矽晶片 |
外文關鍵詞: | nano-structure, stress concentration, silicon chip |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
太陽能矽晶片目前已普遍被使用,大量的使用以及逐漸普及化造成矽材料的短缺,使得矽晶片的薄型化越來越重要。薄型化的過程中以及薄試片之加工過程中都容易造成試片表面之缺陷,在缺陷處容易有應力集中之現象,此缺陷也成為試片破裂之起始點。本研究利用有限單元分析軟體,首先探討奈米孔洞結構對於表面缺陷處應力集中現象之影響,再對不同形貌之奈米孔洞結構以及不同表面缺陷分別做不同參數之模擬分析。由於本研究中著重在探討缺陷附近之應力變化情形,因此採用局部法,只在缺陷附近建立奈米結構來模擬缺陷附近之情形。另外以銀當作正電極、鋁當作負電極建立太陽能電池疊層板結構,探討不同形式的疊層板結構是否對奈米結構的效果有所影響。實驗方面,我們可以由四點彎矩實驗中看出奈米結構的效果,並且由實驗結果去對分析結果作驗證。期望本研究之結果能在矽晶片薄型化之相關製程上提供參考。
Increasing uses of silicon chip in solar cell makes the thinning of silicon chip necessary. Surface defects are easily induced on chip during the thinning and machining processes. The stress concentration resulted from defects would be the source of crack and failure of silicon chips.
In this research, the finite element analysis was first used to investigate the effect of nano-structure on stress concentration caused by surface defect with different parameters for silicon chip. Since we focused on the stress distribution near the defect, nano-structures were introduced in the nearby area of defect in the analysis. The four-point bending tests of silicon chip were also performed to access the effect of nano-structure on the strength of silicon chip and compared with the results from simulation. For the solar cell models, positive silver and negative aluminum electrodes were added, and the effect of nano-structure with different patterns of solar cell were discussed. The results obtained in this research can provide some useful suggestions in the process of thinning silicon chip.
B. Yang and X. M. Chen, “Alumina Ceramics Toughened by a Piezoelectric Secondary Phase, ” Journal of the European Ceramic Socitety, Vol. 20, pp. 1687-1690, 2000.
C. Wilson, A. Ormeggi and M. Narbutovskih, “Fracture Testing of Silicon Microcantilever Beams, ” Journal of Applied Physics, Vol. 79, No. 5, pp. 2386-2393, 1996.
J. Lee, N. Lakshminarayan, S. Dhungel, K. Kim and J. Yi, “Optimization of Fabrication Process of High-Efficiency and Low-Cost Crystalline Silicon Solar Cell for Industrial Applications, ” Solar Energy Materials and Solar Cells, Vol. 93 pp. 256-261, 2009.
C. Sun, W. Fan, C. Cheng, C. Lin and K. Huang, “Templated Fabrication of Large Area Subwavelength Antireflection Gratings on Silicon, ” Applied Physics Letters, Vol. 91 pp. 231105, 2007.
H. Chen, W. Fan, C. Chen, C. Lin and K. Huang, “Fabrication of Texturing Antireflection Structures in Solar Cells by Using the Defocusing Exposure in Optical Lithography, ” Journal of The Electrochemical Society, Vol. 153, pp. G802-G806, 2006.
Z. Xi, D. Yang, W. Dan, C. Jun, X. Li and D. Que, “Texturization of Cast Multicrystalline Silicon for Solar Cells, ” Semiconductor Science and Technology, Vol. 19, pp. 485-489, 2004.
E Vazsonyi, K. De Clercq, R. Einhaus, E. Van Kerschaver, K. Said, J. Poortmans, J. Szlufcik and. Mijs, “Improved Anisotropic Etching Process for Industrial Texturing of Silicon Solar Cells,” Sol Energ Mater Sol Cells, Vol. 57, pp. 179-188, 1999.
W. Guter, J. Schone, S. Philipps, M.Steiner, G. Siefer, A.Wekkeli, E. Welser, E. Oliva, A. Bett and F. Dimroth, “Current-matched Triple-junction Solar Cell Reaching 41.1% Conversion Efficiency Under Concentrated Sunlight,” Applied Physics Letters, Vol. 94, pp. 223504, 2009.
K.Munzer, K. Holderman, R Schlosser and S. Sterk, “Thin Monocrystalline Silicon Solar Cells,” IEEE Transactions on Electron Devices, Vol. 46, No. 10, pp. 2055-2061, 1999.
T. Yi, L. Li and C. Kim, “Microscale Material Testing of Single Crystalline Silicon: Process Effects on Surface Morphology and Tensile Strength,” Sensors & Actuators: A. Physical, Vol. 83, pp. 172-178, 2000.
K. Chen, A. Ayon and S. Spearing, “Controlling and Testing the Fracture Strength of Silicon on the Mesoscale,” Journal of Electronic Packaging, Vol. 83, pp. 1476-1484, 2000.
N. McLellan, N. Fan, S. Liu K. Lau and J. Wu, “Effects of Wafer Thinning Condition on the Roughness, Morphology and Fracture Strength of Silicon Die,” Journal of Electronic Packaging, Vol. 126, pp. 110-114, 2004.
H Jiun, I. Ahmad, A. Jalar and G. Omar, “Effect of Wafer Thinning Methods Towards Fracture Strength and Topography of Silicon Die,” Microelectronics Reliability, Vol. 46, pp. 836-845, 2006.
J. Xu, J. Luo, L. Wang and X. Lu, “The Crystallographic Change in Sub-surface Layer of the Silicon Single Crystal Polished by Chemical Mechanical Polishing,” Tribology International, Vol. 40, pp. 285-289, 2007.
Y. Tian, L. Zhou, J. Shimizu, Y. Tashrio and R. Kang, “Elimination of Surface Scratch/Texture on the Surface of Single Crystal Si Substrate in Chemo-mechanical Grinding (CMG) Process,” Applied Surface Science, Vol. 255, pp. 4205-4211, 2009.
D. Y. Khang, H. Q. Jiang, Y. Huang and J. A. Rogers, ”A Stretchable Form of Single-crystal Silicon for High-performance Electronics on Rubber Substrates,” Science, Vol. 311, pp. 208-212, 2006.
D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Z. Song, Y. G. Y. Huang, Z. J. Liu, C. Lu and J. A. Rogers, ”Stretchable and Foldable Silicon Integrated Circuits,” Science, Vol. 320, pp. 507-511, 2008.
P. Vukusic and J. R. Sambles, “Photonic Structure in Biology,” Nature, Vol. 424, pp.852-855, 2003.
A. R. Parker, R. C. McPhedran, D. R. McKenzie, L. C. Botten and N. A. P. Nicorovici, “Photonic Engineering – Aphrodite’s Iridescence,” Nature, Vol. 409, pp. 36-37, 2001.
A. Sweeney, C. Jiggins and S. Johnsen, “Insect Communication: Polarized Light as a Butterfly Mating Signal,” Nature, Vol. 423, pp. 31-32, 2003.
P. Vukusic, B.Hallam and J. Noyes, ”Brilliant Whiteness in Ultrathin Beetle Scales,” Science, Vol. 315, pp. 348-348, 2007.
R. Blossey, “Self-cleaning Surfaces – Virtual Realities,” Nature Materials, Vol. 2, pp. 301-306, 2003.
A. R. Parker and C. R. Lawrence, “Water Capture by a Desert Beetle,” Nature, Vol. 414, pp. 33-34, 2001.
C. Sanchez, H. Arribart and M. M. G. Guille, “Biomimetism and Bioinspiration as Tools for the Design of Innovative Materials and Systems,” Nature Materials, Vol. 4, pp. 277-288, 2005.
G. E. Fantner, T. Hassenkam, J. H. Kindt, J. C. Weaver, H. Birkedal, L. Pechenik, J. A. Cutroni, G. A. G. Cidade, G. D. Stucky, D. E. Morse and P. K. Hansma , “Sacrificial Bonds and Hidden Length Dissipate Energy as Mineralized Fibrils Separate During Bone Fracture,” Nature Materials, Vol. 4, pp. 612-616, 2005.
G. Mayer, “Rigid Biological Systems as Models for Synthetic Composites,” Science, Vol. 310, pp. 1144-1147, 2005.
P.Podsiadlo, A. K. Kaushik, E. M. Arruda, A. M. Waas, B. S. Shim, J. D. Xu, H. Nandivada, B. G. Pμmplin, J. Lahann, A. Ramamoorthy and N. A. Kotov, “Ultrastrong and Stiff Layered Polymer Nanocomposites,” Science, Vol. 318, pp. 80-83, 2007.
A. Rinaldi, “Naturally better – Science and Technology Are Looking to Nature’s Successful Designs for Inspiration,” Embo Reports, Vol. 8, pp. 995-999, 2007.
G. Y. Xie, G. M. Zhang, F. Liu and S. C. Mu, “The Fabrication of Subwavelength Anti-reflective Nanostructures Using a Bio-template,” Nanotechnology, Vol. 19, pp. 095605-1-095605-5, 2008.
F. Song, K. L. Lee, A. K. Soh, F. Zhu and Y. L. Bai, “Experimental Studies of the Material Properties of the Forewing of Cicada (Homoptera, Cicadidae),” Journal of Experimental Biology, Vol. 207, pp. 3035-3042, 2004.
P. R. Stoddart, P. J. Cadusch, T. M. Boyce, R. M. Erasmus and J. D. Comins, “Optical Properties of Chitin: Surface-enhanced Raman Scattering Substrates Based on Antireflection Structures on Cicada Wings,” Nanotechnology, Vol. 17, pp. 680-686, 2006.
X. J. Feng and L. Jiang, “Design and Creation of Superwetting/Antiwetting Surfaces,” Advanced Materials, Vol. 18, pp. 3063-3078, 2006.
T. L. Sun, L. Feng, X. F. Gao and L. Jiang, “Bioinspired Surfaces With Special Wettability,” Accounts of Chemical Research, Vol. 38, pp. 644-652, 2005.
P. Vukusic and J. Sambles, “Photonic Structures in Biology,” Nature, Vol. 424, pp. 852-855, 2003.
D. William, Fundamentals of Materials Science and Engineering: Wiley New York, 2001.
S. Zhang, D. Sun, Y. Q. Fu and H. J. Du, “Toughening of Hard Nanostructural Thin Films: a Critical Review,” Surface & Coatings Technology, Vol. 198, pp. 2-8, 2005.
D. Kovar, M. D. Thouless and J. W. Halloran, “Crack Deflection and Propagation in Layered Silicon Nitride Boron Nitride Ceramics,” Journal of the American Ceramic Society, Vol. 81, pp. 1004-1012, 1998.
R. O. Ritchie, “Mechanisms of Fatigue-crack Propagation in Ductile and Brittle Solids,” International Journal of Fracture,” Vol. 100, pp. 55-83, 1999.
A. G. Evans, “Perspective on the Development of High-Toughness Ceramics,” Journal of the American Ceramic Society, Vol. 73, pp. 187-206, 1990.
Z. Xia, L. Riester, W. A. Curtin, H. Li, B. W. Sheldon, J. Liang, B. Chang and J. M. Xu, “Direct Observation of Toughening Mechanisms in Carbon Nanotube Ceramic Matrix Composites,” Acta Materialia, Vol. 52, pp. 931-944, 2004.
Q. S. Ma, Z. H. Chen, W. W. Zheng and H. F. Hu, “Processing and Characterization of Three-dimensional Carbon Fiber-reinforced Si-O-C Composites Via Precursor Pyrolysis,” Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, Vol. 352, pp. 212-216, 2003.
C. T. Huang and J. Yeh, “Stress Relaxation of V-shaped Notch on Single Crystal Silicon Using Nanoholes,” National Tsing Hua University Master thesis, 2009.
ANSYS Release 12.1, ANSYS, Inc., PA, 2010.
R. D. Cook, D. S. Malkus, M. E. Plesha and R. J. Witt, Concepts and Applications of Finite Element Analysis, 4th ed., Wiley, Danvers, 2002.
L. J. Segerlind, Applied Finite Element Analysis, 2nd, Wiley, New York, 1984.
ANSYS User’s Manual, ANSYS Inc.
康淵,陳信吉,ANSYS入門,全華科技圖書股份有限公司,台北,2003。
陳其男,仿高砂熊蟬的翅膀奈米結構提升單晶矽的機械強度,博士論文,國立清華大學電子工程研究所,新竹,台灣,2008。
D. Broek 著,陳文華、張士欽譯,《基本工程破裂力學 第四版 Elementary Engineering Fracture Mechanics 4^th ed.》,國立編譯館出版,中華民國八十四年十月出版。
W. Pilkey, Peterson’s Stress Concentration Factors:Wiley-Interscience, New York, 1997.
C. R. Chiang, “On Stress Cocentration Factors in Orthotropic Materials,” Journal of the Chinese Institute of Engineers, Vol. 22, No. 3, pp. 301-305, 1999.
ASTM E8/E8M-11, “Standard Test Methods for Tension Testing of Metallic Materials,” Annual Book of ASTM Standards, Vol. 3.01, 2013.
ASTM E855-90, “Standard Test Methods for Bend Testing of Metallic Flat Materials for Spring Applications Involving Static Loading,” Annual Book of ASTM Standards, Vol. 3.01, 2013.
Matthew A. Hopcroft, William D. Nix, and Thomas W. Kenny, “What is the Young’s Modulus of Silicon,” Journal of Microelectromechanical Systems, Vol. 19, no. 2, pp. 229-238, April 2010.