簡易檢索 / 詳目顯示

研究生: 許祐維
Hsu, You-Wei
論文名稱: 連續與差排波浪型鰭管式熱交換器性能比較分析
Comparison of performance between continuous and interrupted wavy fin-and-tube heat exchangers
指導教授: 許文震
Sheu, Wen-Jenn
口試委員: 陳炎洲
Chen, Yen-Cho
李隆正
Li, Long-Zheng
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 72
中文關鍵詞: 鰭管式熱交換器中斷型平滑波浪型鰭片橢圓管
外文關鍵詞: fin-and-tube heat exchangers, interrupted, smooth wavy fin, oval tube
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用3D數值分析,數值模型為使用橢圓管之差排平滑波浪型熱交換器,主要參數分別為管排數—4、6、8排,鰭片間距—1.2mm、1.8mm、3mm、4mm及差排位置。差排位置為在管排數4、6及8排時,每兩排一組,組間設置差排點,而與實驗數據驗證之j因子之誤差區間為4.4 - 13.9%,f因子之誤差區間為4.3 - 12.6%。結果發現熱傳係數隨鰭片間距減小而上升,不過在鰭片間距為3mm及4mm的樣本中,其熱傳係數相仿。對所有樣本來說,管排數對摩擦因子的影響不大,而摩擦因子隨鰭片間距增加而上升,且雷諾數越高差距越大。在性能指標的表現中,管排數為4的連續型與不連續型鰭片在低雷諾數區時,差異不大,但在雷諾數提高時,不連續型鰭片的性能指標較差。管排數為6之樣本中,差排位置在第4、5排間的樣本其連續與不連續型鰭片在性能指標表現下差異不大,而差排位置在第2、3排間及第2、3排與第4、5排間,此兩種樣本皆是不連續型鰭片的性能指標優於連續型。管排數為8之模型中,只要在管排第2、3排間有差排之樣本,其性能指標皆是不連續型鰭片的性能指標優於連續型。


    3D numerical analysis will be employed in this study, and the model is interrupted smooth wavy fin-and-tube heat exchangers with oval tube. The main parameters in this study are the amount of tube rows (4, 6, 8), fin pitches (1.2, 1.8, 3, 4 mm) and interrupted positions. The interrupted positions are set up between groups that one group consists of two rows when the amount of tube rows are 4, 6 and 8. The
    verification error area compared to experiment data is 4.4 - 13.9% of j factor and is 4.3 - 12.6% of f factor. It is found that the heat transfer coefficient increase as fin pitch decrease; however, the heat transfer coefficient is similar at F_p=3 and 4mm. For all samples, the effect of tube row on friction factors is negligible. The friction factor increases as fin pitch spacing increase, and as the Reynolds number increases, the increase of friction factor with pitch spacing also accelerates. At low Reynolds region, the performance index is similar between the continuous and interrupted case at N=4; however, the performance index of interrupted case is worse when Reynolds number increases. In the case of N=6, the performance index is similar between the continuous and interrupted case that the interrupted position locates between No.4 &5 tube rows. Moreover, the performance index of the interrupted case is superior to the continuous case at the two cases that the interrupted position locates between No.2&3 tube rows and the other locates between No.2 &3 and No.4 &5 tube rows. In the case of N=8, as long as the interrupted position locating between No.2 &3, the performance index of the interrupted case is superior to the continuous case.

    第一章 緒論 5 1.1 前言 5 1.2 文獻回顧 6 1.3 研究目的 22 第二章 數值方法 24 2-1 基本假設 24 2-2 統御方程式 25 2-3 邊界條件 26 2-4 參數定義 28 第三章 熱交換器模型 29 第四章 結果與討論 37 4-1 空氣側對流熱傳係數(h) 41 4-1-1 鰭片間距對空氣側對流熱傳係數(h)之影響 41 4-1-2 管排數對空氣側對流熱傳係數(h)之影響 41 4-2 空氣側摩擦因子(f) 42 4-2-1 鰭片間距對空氣側摩擦因子(f)之影響 42 4-2-2管排數對空氣側摩擦因子(f)之影響 42 4-3 連續與不連續鰭片之綜合性能比較 42 第五章 結論與未來展望 60 5-1 結論 60 5-2 建議與未來展望 61 參考文獻 62 附錄A 65 A-1 基本熱傳原理 65 A-2 ε-NTU法 66 A-3 表面效率與鰭片效率 68 A-4壓降計算 70 A-5 性能參數無因次化 71

    [1] C.C. Wang, W.L. Fu, C.T. Chang, Heat transfer and friction characteristics of typical wavy fin-and-tube heat exchangers. Exp. Therm. Fluid Sci. 14 (2) (1997) 174–186.
    [2] C.C. Wang, Y.M. Tsi, D.C. Lu, Comprehensive study of convex-louver and wavy fin-and-tube heat exchangers. AIAA J. Thermophysics and Heat Transfer 12 (1998) 423-430.
    [3] C.C. Wang, J.Y. Jang, N.F. Chiou, A heat transfer and friction correlation for wavy fin-and-tube heat exchangers. Int. J. Heat and Mass Transfer 42 (1999a) 1919-1 924.
    [4] C.C. Wang, J.Y. Chang, N.F. Chiou, Effects of waffle height on the air-side performance of wavy fin-and-tube heat exchangers. Heat Transfer Engineering vol. 20 no. 3 (1999).
    [5] C.C. Wang, K.U. Chi, Heat transfer and friction characteristics of plain fin-and- tube heat exchangers: part I: new experimental data. Int. J. Heat and Mass Transfer 43 (2000) 2681–2691.
    [6] C.C. Wang, K.U. Chi, Heat transfer and friction characteristics of plain fin-and- tube heat exchangers: part II: Correlation. Int. J. Heat and Mass Transfer 43 (2000) 2693–2700.
    [7] C.C. Wang, R.L. Webb, K.Y. Chi, Data reduction for air-side performance of fin-and-tube heat exchangers. Exp Therm Fluid Sci 21 (2000) 218–226.
    [8] Y.J. Du, C.C. Wang, An experimental study of the airside performance of the superslit fin-and-tube heat exchangers. Int. J. Heat and Mass Transfer 43 (2000) 4475-7782.
    [9] Y. Chokeman, S. Wongwises, Effect of fin pattern on the air-side performance of herringbone wavy fin-and-tube heat exchangers. Heat Mass Transfer 41 (2005) 642–650.
    [10] S. Wongwises, Y. Chokeman, Effect of fin pitch and number of tube rows on the air side performance of herringbone wavy fin and tube heat exchangers. Energy. Convers. Manage. 46 (2005) 2216–2231.
    [11] B. Youn, N.H. Kim, An experimental investigation on the airside performance of fin-and-tube heat exchangers having sinusoidal wave fins. Heat Mass Transfer 43 (2007) 1249-1262.
    [12] C.C. Wang, J.S. Liaw, B.C. Yang, Air-side performance of herringbone wavy fin- and-tube heat exchangers – Data with larger diameter tube. Int. J. Heat and Mass Transfer 54 (2011) 1024–1029.
    [13] 徐振傑,“大管徑圓管與橢圓管之平滑波浪型鰭管式熱交換器的空氣側性能研究”,碩士論文,動力機械工程學系,清華大學,2017。
    [14] Y.G. Lei, Y.L. He, L.T. Tian, P. Chu, W.Q. Tao, Hydrodynamics and heat transfer characteristics of a novel heat exchanger with delta-winglet vortex generators. Chemical Engineering Science 65 (2010) 1551-1562.
    [15] H. Han, Y.L. He, Y.S. Li, Y. Wang, M. Wu, A numerical study on compact enhanced fin-and-tube heat exchangers with oval and circular tube configurations. Int. J. Heat and Mass Transfer 65 (2013) 686-695.
    [16] B. Lotfi, M. Zeng, B. Sunden, Q. Wang, 3D numerical investigation of flow and heat transfer characteristics in smooth wavy fin-and-elliptical tube heat exchangers using new type vortex generators. Energy 73 (2014) 233-257.
    [17] Z.M. Lin, L.B. Wang, Y.H. Zhang, Numerical study on heat transfer enhancement of circular tube bank fin heat exchanger with interrupted annular groove fin. Applied Thermal Engineering 73 (2014) 1465-1476.
    [18] C.I. Jeanette, A. Wu, Florian Dudast, P.V. Arturo, Numerically-based parametric analysis of plain fin and tube compact heat exchangers. Applied Thermal Eng. 86 (2015) 1-13.
    [19] L. Gu, J. Min, X. Wu, L. Yang, Airside heat transfer and pressure loss characteristics of bare and finned tube heat exchangers used for aero engine cooling considering variable air properties. Int. J. Heat and Mass Transfer 108 (2017) 1839-1849.
    [20] L. Zhao, X. Gu, L. Gao, Z. Yang, Numerical study on airside thermal-hydraulic performance of rectangular finned elliptical tube heat exchanger with large row number in turbulent flow regime. Int. J. Heat and Mass Transfer 114 (2017) 1314-1330.
    [21] ESDU 86018, Effectiveness-NTU relationships for the design and performance evaluation of two-stream heat exchangers. Engineering Science Data Unit 86018 with amendment A, July 1991 92-107, ESDU International plc, London.
    [22] 王啟川,熱交換設計,五南圖書出版股份有限公司,2007年。
    [23] J. Zhang, J. Kundu, R.M. Manglik, Effect of fin waviness and spacing on the lateral vortex structure and laminar heat transfer in wavy-plate-fin cores. Int. J. Heat and Mass Transfer 47 (2004) 1719-1730.

    QR CODE