研究生: |
鄧亦棋 Deng, Yi-Qi |
---|---|
論文名稱: |
探討鐵基催化劑的活性位點及載體效應於產氨反應之影響 Mechanistic Understanding of Active Sites and Support Effects in Fe-based Catalysts for NH3 Production |
指導教授: |
陳馨怡
Chen, Hsin-Yi Tiffany |
口試委員: |
郭錦龍
Kuo, Chin-Lung 蔡明剛 Tsai, Ming-Kang 楊家銘 Yang, Chia-Min 高橋開人 Takahashi, Kaito |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 80 |
中文關鍵詞: | 氨合成 、鐵觸媒 、活性位點 、載體效應 、密度泛函理論 |
外文關鍵詞: | NH3 Synthesis, Fe catalysts, Active Sites, Support Effect, Density Functional Theory |
相關次數: | 點閱:53 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
工業界哈伯製氨法所使用的鐵觸媒除了容易取得且價格便宜外,與其產氨效率相比可接受的催化活性,使得其在現今產氨工業仍具優勢。過往的研究結果已發現Fe(111)比起其他表面具有最高的產氨效率,因為其具有C7活性位點。然而尚未有詳細的研究提出C7活性位點促進產氨反應的機制,因此本研究將利用密度泛函理論 (density functional theory, DFT) 研究擁有C7活性位點之Fe(111)上的產氨反應,並與沒有C7活性位點的Fe(110)進行比較。根據本項工作,態密度與Bader電荷分析表明,側向(side-on)吸附的N2得到了更多的π*電子反向回饋(π* back donation) (1.49 |e|),而在Fe(110)上則是1.18 |e|,這也導致了側向吸附的N2在Fe(111)上鍵長為1.332 Å,在Fe(110)上為1.261 Å。此外,從能量分析結果證實,Fe(111)表面上N2解離的活化能為0.44 eV,遠遠低於Fe(110)上的1.12 eV。以上分析皆說明了N2在Fe(111)上更加地被活化近年來,單原子觸媒及單團簇觸媒引起了廣泛關注,因其提升觸媒利用率及明確的活性中心,故被視為溫和條件下合成具有高效能和低碳足跡的綠氨之潛在觸媒。例如在先前的研究中,搭載在MgO(111)上的釕單原子及團簇在N2活化及氨合成反應表現出更加的性能。因此,我們進一步研究了負載在MgO(111)上的鐵基觸媒對於N2活化與產氨之效能。在所構建的Fe1/MgO(111)系統中,N2為端向(end-on)吸附,其鍵長為1.114 Å,並沒有被活化的跡象。此外,解離的2N在Fe1/MgO(111)上的吸附並不穩定(1.93 eV),推論解離機制在該系統上不易發生。因此,我們考慮了締合機制(Associative mechanism),其為被吸附的N2分子直接氫化。然而,由於MgO(111)具有強極性,因此模擬H2在Fe1/MgO(111)上的活化後,發現解離的氫原子很容易溢流到載體表面的氧原子上,此氫溢流抑制了吸附於觸媒上的N2分子進行氫化。計算結果指出,只有一個氫原子可以與吸附的N2鍵結,而進一步增加氫原子將會導致氫原子溢流到MgO(111)表面,這說明締合機制在Fe1/MgO(111)系統上也不易發生。本研究為Fe(111)上的產氨途徑提供了新的見解,闡明了由C7活性位點所促進的低反應能障之N2活化機制。對Fe1/MgO(111)的研究結果則表明,鐵單原子催化劑不適合用於產氨反應。以上計算結果及機制了解,於鐵觸媒產氨反應,說明C7活性位點為活化氮氣之關鍵,希冀以上說明對於開發新一代鐵基觸媒以實現更高效的氨生產能有所助益。
In addition to their reactivity, iron (Fe) catalysts are accessible and inexpensive, which qualifies them as promising materials for industrial thermal catalytic ammonia production. In previous studies, it has been found that, due to the presence of C7 active sites, Fe(111) has the highest ammonia production efficiency than other surfaces. However, the detailed mechanism explaining how the C7 sites facilitate improved ammonia production remains poorly understood, limiting the development of modern Fe catalysts for ammonia production. In this study, density functional theory (DFT) is used to understand the effect of the special C7 active sites by comparing the complete ammonia production reaction on a Fe(111) with the C7 active sites to that on a Fe(110) surface without a C7 site. A distinct mechanism for N2 dissociation, commonly the rate-determining step, is observed on the two studied Fe surfaces. The density of states and Bader charge analyses show that a side-on adsorbed N2 receives more π* back donation on Fe(111) (1.49 |e|), as compared to that on Fe(110) (1.18 |e|). This leads to a more activated side-on N2 bond length of 1.332 Å on Fe(111) as compared to 1.261 Å on Fe(110). Thus, the activation energy for the subsequent N2 dissociation of 0.44 eV on the surface of Fe(111) is much lower than the 1.12 eV on Fe(110).For instance, a previous study on Ru single atoms and clusters supported on the surface of MgO(111) showed enhanced performance for ammonia synthesis and N2 activation. In addition to the pure metal (Fe) catalysts, we have also investigated the N2 activation mechanism and ammonia production on models of single Fe atom or Fe clusters supported on MgO(111). On the constructed Fe1/MgO(111) models, N2 adsorbs in an end-on configuration, whose bond with a length of 1.114 Å, is not significantly activated. Furthermore, the adsorption of dissociated 2N on Fe1/MgO(111) is not stable (1.93 eV), indicating that a dissociative mechanism is not favored on the system. Therefore, the associative mechanism, characterized by direct hydrogenation of adsorbed N2 molecules, was considered. However, simulation of H2 activation on Fe1/MgO(111), easily leads to spillover of dissociated H atom to surface O atoms of the support because of its strong polarity. Such H spillover inhibits the hydrogenation of the adsorbed N2 molecule. In our calculations, only one H atom could bind to the adsorbed N2 while further addition of H atoms leads to spillover to the MgO(111) surface, indicating that the associative mechanism is also not favored on the Fe1/MgO(111) system. The present study provides novel insights into the ammonia production pathway on Fe(111) where the mechanism of a low-barrier N2 activation facilitated by the C7 sites are successfully elucidated. The results for Fe1/MgO(111) suggest that a single-atom catalyst is not suitable for ammonia-producing reactions. These interesting findings will be useful for the development of Fe-based catalysts for more efficient ammonia production.
1. Tamaru, K., The History of the Development of Ammonia Synthesis, in Catalytic Ammonia Synthesis: Fundamentals and Practice, J.R. Jennings, Editor. 1991, Springer US: Boston, MA. p. 1-18.
2. Rouwenhorst, K.H.R., et al., Chapter 4 - Ammonia Production Technologies, in Techno-Economic Challenges of Green Ammonia as an Energy Vector, A. Valera-Medina and R. Banares-Alcantara, Editors. 2021, Academic Press. p. 41-83.
3. Humphreys, J., R. Lan, and S. Tao, Development and Recent Progress on Ammonia Synthesis Catalysts for Haber–Bosch Process. Advanced Energy and Sustainability Research, 2021. 2(1): p. 2000043.
4. Spencer, M.S., On the rate-determining step and the role of potassium in the catalytic synthesis of ammonia. Catalysis Letters, 1992. 13(1): p. 45-53.
5. Qian, J., et al., Reaction Mechanism and Kinetics for Ammonia Synthesis on the Fe(111) Surface. Journal of the American Chemical Society, 2018. 140(20): p. 6288-6297.
6. Wu, S., et al., Removal of Hydrogen Poisoning by Electrostatically Polar MgO Support for Low-Pressure NH3 Synthesis at a High Rate over the Ru Catalyst. ACS Catalysis, 2020. 10(10): p. 5614-5622.
7. Aika, K.-i., Role of alkali promoter in ammonia synthesis over ruthenium catalysts—Effect on reaction mechanism. Catalysis Today, 2017. 286: p. 14-20.
8. Rivera Rocabado, D.S., et al. Uncovering the Mechanism of the Hydrogen Poisoning on Ru Nanoparticles via Density Functional Theory Calculations. Catalysts, 2022. 12, DOI: 10.3390/catal12030331.
9. Wang, A., J. Li, and T. Zhang, Heterogeneous single-atom catalysis. Nature Reviews Chemistry, 2018. 2(6): p. 65-81.
10. Li, Z., et al., Well-Defined Materials for Heterogeneous Catalysis: From Nanoparticles to Isolated Single-Atom Sites. Chemical Reviews, 2020. 120(2): p. 623-682.
11. Liu, L. and A. Corma, Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chemical Reviews, 2018. 118(10): p. 4981-5079.
12. Yang, X.-F., et al., Single-Atom Catalysts: A New Frontier in Heterogeneous Catalysis. Accounts of Chemical Research, 2013. 46(8): p. 1740-1748.
13. Liu, J.-C., et al., Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism. Nature Communications, 2018. 9(1): p. 1610.
14. Li, L., et al., Size sensitivity of supported Ru catalysts for ammonia synthesis: From nanoparticles to subnanometric clusters and atomic clusters. Chem, 2022. 8(3): p. 749-768.
15. Ma, X.-L., et al., Surface Single-Cluster Catalyst for N2-to-NH3 Thermal Conversion. Journal of the American Chemical Society, 2018. 140(1): p. 46-49.
16. Du, Y., et al., Atomically Precise Noble Metal Nanoclusters as Efficient Catalysts: A Bridge between Structure and Properties. Chemical Reviews, 2020. 120(2): p. 526-622.
17. Strongin, D.R., et al., The importance of C7 sites and surface roughness in the ammonia synthesis reaction over iron. Journal of Catalysis, 1987. 103(1): p. 213-215.
18. Somorjai, G.A. and N. Materer, Surface structures in ammonia synthesis. Topics in Catalysis, 1994. 1(3): p. 215-231.
19. Mortensen, J.J., et al., Nitrogen Adsorption and Dissociation on Fe(111). Journal of Catalysis, 1999. 182(2): p. 479-488.
20. Wu, S., et al., Rapid Interchangeable Hydrogen, Hydride, and Proton Species at the Interface of Transition Metal Atom on Oxide Surface. Journal of the American Chemical Society, 2021. 143(24): p. 9105-9112.
21. Ertl, G., Primary steps in catalytic synthesis of ammonia. Journal of Vacuum Science & Technology A, 1983. 1(2): p. 1247-1253.
22. Ozaki, A., K.-i. Aika, and H. Hori, A New Catalyst System for Ammonia Synthesis. Bulletin of the Chemical Society of Japan, 1971. 44(11): p. 3216-3216.
23. Medford, A.J., et al., From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. Journal of Catalysis, 2015. 328: p. 36-42.
24. Kojima, R. and K.-i. Aika, Cobalt molybdenum bimetallic nitride catalysts for ammonia synthesis: Part 1. Preparation and characterization. Applied Catalysis A: General, 2001. 215(1): p. 149-160.
25. Kojima, R. and K.-i. Aika, Cobalt molybdenum bimetallic nitride catalysts for ammonia synthesis: Part 2. Kinetic study. Applied Catalysis A: General, 2001. 218(1): p. 121-128.
26. Jacobsen, C.J.H., et al., Catalyst Design by Interpolation in the Periodic Table: Bimetallic Ammonia Synthesis Catalysts. Journal of the American Chemical Society, 2001. 123(34): p. 8404-8405.
27. Rao, C.N.R. and G. Ranga Rao, Nature of nitrogen adsorbed on transition metal surfaces as revealed by electron spectroscopy and cognate techniques. Surface Science Reports, 1991. 13(7): p. 223-263.
28. Aika, K.-i., H. Hori, and A. Ozaki, Activation of nitrogen by alkali metal promoted transition metal I. Ammonia synthesis over ruthenium promoted by alkali metal. Journal of Catalysis, 1972. 27(3): p. 424-431.
29. Ertl, G., Reactions at Surfaces: From Atoms to Complexity (Nobel Lecture). Angewandte Chemie International Edition, 2008. 47(19): p. 3524-3535.
30. Hansen, T.W., et al., Atomic-Resolution in Situ Transmission Electron Microscopy of a Promoter of a Heterogeneous Catalyst. Science, 2001. 294(5546): p. 1508-1510.
31. Kitano, M., et al., Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nature Chemistry, 2012. 4(11): p. 934-940.
32. Kitano, M., et al., Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis. Nature Communications, 2015. 6(1): p. 6731.
33. Kitano, M., et al., Essential role of hydride ion in ruthenium-based ammonia synthesis catalysts. Chemical Science, 2016. 7(7): p. 4036-4043.
34. Gao, W., et al., Barium Hydride-Mediated Nitrogen Transfer and Hydrogenation for Ammonia Synthesis: A Case Study of Cobalt. ACS Catalysis, 2017. 7(5): p. 3654-3661.
35. Chang, F., et al., Potassium hydride-intercalated graphite as an efficient heterogeneous catalyst for ammonia synthesis. Nature Catalysis, 2022. 5(3): p. 222-230.
36. Yan, H., et al., Lithium Palladium Hydride Promotes Chemical Looping Ammonia Synthesis Mediated by Lithium Imide and Hydride. The Journal of Physical Chemistry C, 2021. 125(12): p. 6716-6722.
37. Kobayashi, Y., et al., Titanium-Based Hydrides as Heterogeneous Catalysts for Ammonia Synthesis. Journal of the American Chemical Society, 2017. 139(50): p. 18240-18246.
38. Wang, Q., J. Guo, and P. Chen, Recent progress towards mild-condition ammonia synthesis. Journal of Energy Chemistry, 2019. 36: p. 25-36.
39. Liu, H., Ammonia synthesis catalyst 100 years: Practice, enlightenment and challenge. Chinese Journal of Catalysis, 2014. 35(10): p. 1619-1640.
40. Boudart, M., Kinetics and Mechanism of Ammonia Synthesis. Catalysis Reviews, 1981. 23(1-2): p. 1-15.
41. Zhang, B.-Y., et al., Interplay Between Site Activity and Density of BCC Iron for Ammonia Synthesis Based on First-Principles Theory. ChemCatChem, 2019. 11(7): p. 1928-1934.
42. Van Hardeveld, R. and F. Hartog, The statistics of surface atoms and surface sites on metal crystals. Surface Science, 1969. 15(2): p. 189-230.
43. Nicholas, J.F. and H.M. Otte, An Atlas of Models of Crystal Surfaces. Physics Today, 1965. 18(12): p. 67-68.
44. Comas-Vives, A., K. Larmier, and C. Copéret, Understanding surface site structures and properties by first principles calculations: an experimental point of view! Chemical Communications, 2017. 53(31): p. 4296-4303.
45. van Deelen, T.W., C. Hernández Mejía, and K.P. de Jong, Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nature Catalysis, 2019. 2(11): p. 955-970.
46. Ertl, G., S.B. Lee, and M. Weiss, Adsorption of nitrogen on potassium promoted Fe(111) and (100) surfaces. Surface Science, 1982. 114(2): p. 527-545.
47. Whitman, L.J., et al., Alkali-Metal Promotion of a Dissociation Precursor: ${\mathrm{N}}_{2}$ on Fe(111). Physical Review Letters, 1986. 56(18): p. 1984-1987.
48. Spencer, N.D., R.C. Schoonmaker, and G.A. Somorjai, Iron single crystals as ammonia synthesis catalysts: Effect of surface structure on catalyst activity. Journal of Catalysis, 1982. 74(1): p. 129-135.
49. Dumesic, J.A., H. Topsøe, and M. Boudart, Surface, catalytic and magnetic properties of small iron particles: III. Nitrogen induced surface reconstruction. Journal of Catalysis, 1975. 37(3): p. 513-522.
50. Sokolov, J., F. Jona, and P.M. Marcus, Multilayer relaxation of a clean bcc Fe{111} surface. Physical Review B, 1986. 33(2): p. 1397-1400.
51. Sokolov, J., et al., Multilayer relaxation of body-centred-cubic Fe(211). Journal of Physics C: Solid State Physics, 1984. 17(2): p. 371-383.
52. Strongin, D.R., S.R. Bare, and G.A. Somorjai, The effects of aluminum oxide in restructuring iron single crystal surfaces for ammonia synthesis. Journal of Catalysis, 1987. 103(2): p. 289-301.
53. Falicov, L.M. and G.A. Somorjai, Correlation between catalytic activity and bonding and coordination number of atoms and molecules on transition metal surfaces: Theory and experimental evidence. Proceedings of the National Academy of Sciences, 1985. 82(8): p. 2207-2211.
54. Payne, M.C., et al., Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Reviews of Modern Physics, 1992. 64(4): p. 1045-1097.
55. Yeo, S.C., S.S. Han, and H.M. Lee, Adsorption, dissociation, penetration, and diffusion of N2 on and in bcc Fe: first-principles calculations. Physical Chemistry Chemical Physics, 2013. 15(14): p. 5186-5192.
56. Henkelman, G., B.P. Uberuaga, and H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. The Journal of chemical physics, 2000. 113(22): p. 9901-9904.
57. Jónsson, H., G. Mills, and K.W. Jacobsen, Nudged elastic band method for finding minimum energy paths of transitions, in Classical and quantum dynamics in condensed phase simulations. 1998, World Scientific. p. 385-404.
58. Xiao, P., et al., Solid-state dimer method for calculating solid-solid phase transitions. The Journal of Chemical Physics, 2014. 140(17): p. 174104.
59. Kästner, J. and P. Sherwood, Superlinearly converging dimer method for transition state search. The Journal of Chemical Physics, 2008. 128(1): p. 014106.
60. Heyden, A., A.T. Bell, and F.J. Keil, Efficient methods for finding transition states in chemical reactions: Comparison of improved dimer method and partitioned rational function optimization method. The Journal of Chemical Physics, 2005. 123(22): p. 224101.
61. Henkelman, G. and H. Jónsson, A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. The Journal of Chemical Physics, 1999. 111(15): p. 7010-7022.
62. Cheng, X., et al., Side-on-End-on Coordination of Dinitrogen on a Polynuclear Vanadium Nitride Cluster Anion [V5N5]−. Chemistry – A European Journal, 2019. 25(72): p. 16523-16527.
63. Nosir, M.A., et al., Adsorption dynamics of molecular nitrogen at an Fe(111) surface. Physical Chemistry Chemical Physics, 2017. 19(10): p. 7370-7379.
64. Lu, E., et al., Back-bonding between an electron-poor, high-oxidation-state metal and poor π-acceptor ligand in a uranium(v)–dinitrogen complex. Nature Chemistry, 2019. 11(9): p. 806-811.
65. Guo, X., et al., Tackling the Activity and Selectivity Challenges of Electrocatalysts toward the Nitrogen Reduction Reaction via Atomically Dispersed Biatom Catalysts. Journal of the American Chemical Society, 2020. 142(12): p. 5709-5721.
66. Connor, G.P. and P.L. Holland, Coordination chemistry insights into the role of alkali metal promoters in dinitrogen reduction. Catalysis Today, 2017. 286: p. 21-40.
67. Reyes, Y.I.A., et al., Mechanistic understanding of N2 activation: a comparison of unsupported and supported Ru catalysts. Faraday Discussions, 2023