研究生: |
李季恩 Li, Ji-En |
---|---|
論文名稱: |
對於顏東勇教授的代數拓樸教材之重新詮釋 A Reinterpretation of Algebraic Topology Course Materials Written by Professor Dung-Yung Yan |
指導教授: |
顏東勇
Yan, Dung-Yung |
口試委員: |
王信華
Wang, Shin-Hwa 李華倫 Li, Hua-Lun |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 英文 |
論文頁數: | 55 |
中文關鍵詞: | CW-複形 、胞腔同調 、胞腔鏈複形邊界函數公式 |
外文關鍵詞: | CW-complexes, cellular homology, cellular boundary formula |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們先介紹一些同調代數的相關知識、CW-複形以及胞腔同調群。接著以顏東勇教授
的代數拓樸教材為基礎,推導並重新定義出Hn(Xn,Xn−1) 的標準生成元,這些生成元使我
們可以用比一般課本教材更為精確且具幾何意義的方式,描述胞腔鏈複形邊界函數公式。有
了函數的degree 之概念後,我們就可以用胞腔鏈複形邊界函數公式來計算一些CW-複形的同
調群。
In this thesis, we first go through some facts in homological algebra, CW-complexes, and
cellular homology groups. Then by the algebraic topology course materials written by professor
Yan Dung-Yung, we can derive and redefine the canonical generators of Hn(Xn,Xn−1). These
generators provide a more precise and geometrical way to describe the cellular boundary formula
than the way in common textbooks. After introducing the concept of degree of a map,
we compute the homology groups of some CW complexes by cellular boundary formula.
[1] Maunder, Charles Richard Francis. Algebraic topology, Courier Corporation, 1996.
[2] Hatcher, Allen. Algebraic topology, 2005.
[3] Yan, Dung Yung. Lecture note of algebraic topology, National Tsing Hua University, Hsinchu, Taiwan, 2013.
[4] Peng, Jyun Da. A new geometric description of the boundary map of the cellular homology, National Tsing
Hua University, Hsinchu, Taiwan, 2015.
[5] Chen, Jiun Jia. The three-dimensional animation of the geometric description of the boundary map of the
cellular chain complex, National Tsing Hua University, Hsinchu, Taiwan, 2018.
[6] Degiorgi, Paolo. Cellular Homology and the Cellular Boundary Formula, 2016.