簡易檢索 / 詳目顯示

研究生: 鄭琳潔
Cheng, Lin-Chieh
論文名稱: 銅金屬催化胺、炔、醛氧化環化反應 以合成喹啉鹽類
Cu-Catalyzed Aerobic Oxidation in the Synthesis of Quinolinium Salts from Secondary Amines, Alkynes, Formaldehyde and Acid
指導教授: 鄭建鴻
Cheng, Chien-Hong
口試委員: 蔡易州
Tsai, Yi-Chou
謝仁傑
Hsieh, Jen Chieh
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 112
中文關鍵詞: 喹啉鹽芳香基喹啉鹽A3耦合反應二級胺氧氣
外文關鍵詞: Quinolinium Salts, N-Aryl Quinolinium Salts, A3-Coupling Reaction, Secondary Amine, Copper, Aerobic Oxidation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 含氮雜環銨鹽可見於自然物與生物活性分子的骨架中,其生物應用的潛力,使得如何有效合成這類化合物成為有趣而重要的課題。本篇研究使用醛、二級胺、炔及酸作為反應起始物,在銅金屬的催化下,合成喹啉鹽類衍生物。反應利用酸誘導生成N,N-雙取代亞胺離子,炔化合物接著進行親核加成反應後氧化生成喹啉鹽。本合成方法條件溫和,反應於室溫進行一小時即可得到高產率之產物。


    Substituted heterocyclic nitrogen salts are versatile building blocks for a number of natural products and bioactive motifs. Herein, we report a novel and convenient process to synthesize quinolinium salt derivatives by Cu-catalyzed aerobic oxidative coupling of secondary amine, alkyne and formaldehyde. The reaction proceeds via acid induced N,N-disubstituted iminium ion formation followed by nucleophilic addition of alkyne, annulation, and copper-promoted oxidation. This method features an economical catalyst, one pot process, ambient reaction temperature and short reaction time.

    目錄 中文摘要I 英文摘要II 目錄III 縮寫表V 圖目錄VI 表目錄VII 式目錄VIII 銅金屬催化胺、炔、醛氧化環化反應以合成喹啉鹽類1 1. 前言2 2. 文獻探討2 2.1 喹啉鹽類之重要性與應用2 2.2 喹啉鹽類合成回顧3 2.3 合成喹啉之A3耦合反應及機構8 2.4 研究動機與反應設計12 3. 實驗結果與討論15 3.1 反應條件優化15 3.2 空氣、氧氣反應效率比較17 3.3 反應對不同官能基之測試19 3.4 反應機構探討27 3.5 反應應用29 4. 結論30 5. 實驗部分31 5.1 藥品與實驗儀器31 5.2 實驗步驟32 5.3 實驗數據36 6. 參考文獻56 附錄一59 附錄二102

    [1] Prakash, S.; Muralirajan, K.; Cheng, C.-H. Angew. Chem. Int. Ed. 2016, 55, 1844-1848.
    [2] (a) Jayakumar, J.; Parthasarathy, K.; Cheng, C.-H. Angew. Chem. Int. Ed. 2011, 51, 197-200. (b) Muralirajan, K.; Cheng, C.-H. Chem. Eur. J. 2013, 19, 6198-6202. (c) Jayakumar, J.; Parthasarathy, K.; Chen, Y.-H.; Lee, T.-H.; Chuang, S.-C.; Cheng, C.-H. Angew. Chem. Int. Ed. 2014, 53, 9889-9892. (d) Luo, C.-Z.; Jayakumar, J.; Gandeepan, P.; Wu, Y.-C.; Cheng, C.-H. Org. Lett. 2015, 17, 924-927. (e) Luo, C.-Z.; Gandeepan, P.; Wu, Y.-C.; Tsai, C.-H.; Cheng, C.-H. ACS Catal. 2015, 5, 4837-4841. (f) Upadhyay, N.; Jayakumar, J.; Cheng, C.-H. Adv. Synth. Catal. 2016, 358, 3381-3386. (g) Upadhyay, N.; Jayakumar, J.; Cheng, C.-H. Chem. Commun. 2017, 53, 2491-2494.
    [3] Parthasarathy, K.; Senthilkumar, N.; Jayakumar, J.; Cheng, C.-H. Org. Lett. 2012, 14, 3478-3481.
    [4] Chen, W.-C.; Gandeepan, P.; Tsai, C.-H.; Luo, C.-Z.; Rajamalli, P.; Cheng, C.-H. RSC Adv. 2016, 6, 63390-63397.
    [5] (a) Malíková, J.; Zdařilová, A.; Hlobilková, A.; Ulrichová, J. Cell. Biol. and Toxicol. 2006, 22, 439-453. (b) Jana, J.; Mondal, S.; Bhattacharjee, P.; Sengupta, P.; Roychowdhury, T.; Saha, P.; Kundu, P.; Chatterjee, S. Sci. Rep. 2017, 7, 40706. (c) Almeida, I.; Fernandes, L.; Biazi, B.; Vicentini, V. Anticancer Agents Med. Chem. 2017, 17, 1586-1592.
    [6] (a) Dhopeshwarkar, A.; Jain, S.; Liao, C.; Ghose, S.; Bisset, K.; Nicholson, R. Eur. J. Pharmacol. 2011, 654, 26-32. (b) Tavares, L.; Zanon, G.; Weber, A.; Neto, A.; Mostardeiro, C.; Da Cruz, I.; Oliveira, R.; Ilha, V.; Dalcol, I.; Morel, A. PLoS ONE 2014, 9, e97000.
    [7] Bouquet, J.; Rivaud, M.; Chevalley, S.; Deharo, E.; Jullian, V.; Valentin, A. Malar. J. 2012, 11, 67.
    [8] Shindy, H. Dyes Pigm. 2017, 145, 505-513.
    [9] Wainwright, M. Dyes Pigm. 2008, 76, 582-589.
    [10] Wainwright, M.; Kristiansen, J. Int. J. Antimicrobial Agents 2003, 22, 479-486.
    [11] Sánchez-Martín, R.; Campos, J.; Conejo-García, A.; Cruz-López, O.; Báñez-Coronel, M.; Rodríguez-González, A.; Gallo, M.; Lacal, J.; Espinosa, A. J. Med. Chem. 2005, 48, 3354-3363.
    [12] Bringmann, G.; Thomale, K.; Bischof, S.; Schneider, C.; Schultheis, M.; Schwarz, T.; Moll, H.; Schurigt, U. Antimicrob. Agents Chemother. 2013, 57, 3003-3011.
    [13] Shchepina, N.; Avrorin, V.; Badun, G.; Alexandrova, G.; Agafonova, I.; Popova, N. OJSTA 2014, 03, 21-26.
    [14] (a) Iqbal, N.; Hashim, J.; Ali, S.; Mariya al-Rashida, M.; Alharthy, R.; Ahmad, S.; Khan, K.; Basha, F.; Moin, S.; Hameed, A. RSC Adv. 2015, 5, 95061-95072. (b) Singh, P.; Kumar, R.; Singh, A.; Yadav, P.; Khanna, R.; Vinayak, M.; Tewari, A. J. Mol. Struct. 2018, 1163, 262-269.
    [15] Katritzky, A. R.; Semenzin, D.; Yang, B.; Pleynet, D. J. Heterocycl. Chem. 1998, 35, 467-470.
    [16] (a) Pilyugin, G. T.; Gutsulyak, B. M. Obshch. Khim. 1959, 29, 3076-3079. (b) Pilyugin, G. T.; Gutsulyak, B. M. Russian Chem. Rev. 1963, 32, 167-188. (c) Chernyuk, I.; Pilyugin, G.; Zlochevskaya, A. Chem. Heterocycl. Compd. 1970, 4, 236-237.
    [17] Mel’nik, M.; Turov, A.; Novitskii, Z.; Stetskiv, A.; Bodnarchuk, O.; Ganushchak, N. Russ. J. Gen. Chem. 2006, 76, 634-637.
    [18] 陳韋禎 (2017)。銠與銅錯合物之催化環化反應:苯並呋喃與喹啉鹽類合成應用。國立清華大學化學研究所博士論文,未出版,台灣。
    [19] Xiao, F.-H.; Chen, W.; Liao, Y.-F.; Deng, G.-J. Org. Biomol. Chem. 2012, 10, 8593.
    [20] Xu, X.-F.; Liu, W.-M.; Wang, Z.-Q.; Feng, Y.-Q.; Yan, Y.-L.; Zhang, X. Tetrahedron Lett. 2016, 57, 226-229.
    [21] Syeda Huma, H.; Halder, R.; Singh Kalra, S.; Das, J.; Iqbal, J. Tetrahedron Lett. 2002, 43, 6485-6488.
    [22] Cao, K.; Zhang, F.-M.; Tu, Y.-Q.; Zhuo, X.-T.; Fan, C.-A. Chem. Eur. J. 2009, 15, 6332-6334.
    [23] Zhang, Y.-C.; Li, P.-H.; Wang, L. J. Heterocycl. Chem. 2010, 48, 153-157.
    [24] Li, X.-J.; Mao, Z.-J.; Wang, Y.-U.; Chen, W.-X.; Lin, X.-F. Tetrahedron 2011, 67, 3858-3862.
    [25] Zhang, X.; Xu, X.; Yu, L.; Zhao, Q. Asian J. Org. Chem. 2014, 3, 281-284.
    [26] Fasano, V.; Radcliffe, J.; Ingleson, M. Organometallics 2017, 36, 1623-1629.
    [27] Meyet, C.; Larsen, C. J. Org. Chem. 2014, 79, 9835-9841.
    [28] Jiang, K.-M.; Kang, J.-A.; Jin, Y.; Lin, J. Org. Chem. Front. 2018, 5, 434-441.
    [29] Vessally, E.; Edjlali, L.; Hosseinian, A.; Bekhradnia, A.; Esrafili, M. RSC Adv. 2016, 6, 49730-49746.
    [30] (a) Patil, R.; Adimurthy, S. Adv. Synth. Catal. 2011, 353, 1695-1700. (b) Zhang, G.; Ma, Y.-X.; Wang, S.-L.; Zhang, Y.-H.; Wang, R. J. Am. Chem. Soc. 2012, 134, 12334-12337. (c) Cheng, H.-C.; Hou, W.-J.; Li, Z.-W.; Liu, M.-Y.; Guan, B.-T. Chem. Commun. 2015, 51, 17596-17599. (d) Xu, B.; Hartigan, E.; Feula, G.; Huang, Z.; Lumb, J.; Arndtsen, B. Angew. Chem. Int. Ed. 2016, 55, 15802-15806. (e) Xu, J.-F.; Hu, H.-Y.; Liu, Y.; Wang, X.; Kan, Y.-H.; Wang, C. Eur. J. Org. Chem. 2017, 2, 257-261.
    [31] Wang, T.; Schrempp, M.; Berndhäuser, A.; Schiemann, O.; Menche, D. Org. Lett. 2015, 17, 3982-3985.
    [32] Taneda, H.; Inamoto, K.; Kondo, Y. Chem. Commun. 2014, 50, 6523-6525.
    [33] Liang, R.; Li, S.; Wang, R.-L.; Lu, L.; Li, F. Org. Lett. 2017, 19, 5790-5793.
    [34] Michael, J. Nat. Prod. Rep. 2008, 25, 166-187.
    [35] (a) Capell, B.; Olive, M.; Erdos, M.; Cao, K.; Faddah, D.; Tavarez, U.; Conneely, K.; Qu, X.; San, H.; Ganesh, S.; Chen, X.; Avallone, H.; Kolodgie, F.; Virmani, R.; Nabel, E.; Collins, F. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 15902-15907. (b) Cheng, P.; Zhang, Q.; Ma, Y.-B.; Jiang, Z.-Y.; Zhang, X.-M.; Zhang, F.-X.; Chen, J.-J. Bioorganic Med. Chem. Lett. 2008, 18, 3787-3789. (c) Kraus, J.; Tatipaka, H.; McGuffin, S.; Chennamaneni, N.; Karimi, M.; Arif, J.; Verlinde, C.; Buckner, F.; Gelb, M. J. Med. Chem. 2010, 53, 3887-3898.

    QR CODE