簡易檢索 / 詳目顯示

研究生: 黃正宏
Huang, Cheng-Hung
論文名稱: 探討酸鹼響應之二合一奈米藥物平台其基因與化療藥物攜帶及釋放情形
A pH-Responsive, Two-in-One Nanoplatform for the Catch and Release of Gene and Chemotherapeutic Drug
指導教授: 彭之皓
Peng, Chi-How
口試委員: 陳俊太
Chen, Jiun-Tai
王潔
Wang, Jane
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 106
語文別: 中文
論文頁數: 99
中文關鍵詞: 高分子微胞酸鹼響應阿黴素小干擾核糖核酸
外文關鍵詞: polymeric micelles, pH-responsiveness, doxorubicin, small-interfering RNA
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以化療藥物進行癌症治療常面臨多重抗藥性 (multi-drug resistance) 的問題,導致治療效果不彰,並且缺乏專一性之化療藥物常會導致嚴重副作用。以奈米載體 (nanocarriers) 攜帶化療藥物,儘管能夠提升藥物專一性,但仍無法解決多重抗藥性。為了提升化學治療之療效,本研究設計以不同鏈段長度之三嵌段共聚物 PEG-b- PDMAEMA-b-PDPA 與隨機共聚物 PEG-b-(PDMAEMA-r-PDPA) 自組裝形成之高分子微胞同時攜帶小干擾核醣核酸 (small interfering RNA, siRNA) 與阿黴素 (doxorubicin, Dox),藉由小干擾核糖核酸下調控抗藥性之基因表現,提升化療藥物毒殺癌細胞的效率。此高分子系統可藉由改變帶有正電荷之 PDMAEMA 鏈段長度,影響高分子對 pH 值之靈敏度與小干擾核糖核酸包覆效率。以三嵌段共聚物形成之高分子微胞具有良好之阿黴素包覆效率 (~70%),並將同時攜帶小干擾核糖核酸與阿黴素之 PEG113-b- PDMAEMA43-b-PDPA54 高分子微胞進行阿黴素釋放,24小時阿黴素之累積釋放率在pH= 7.4與5.0的環境下分別為54%與93%,顯示高分子載體具有酸鹼響應之特性。以此系統可作為應用於結合化療藥物與核酸藥物之複合治療的良好平台。


    Chemotherapy for cancer treatment always suffers from low therapeutic efficacy caused by multi-drug resistance. Chemotherapy usually causes serious side effects and lowers the quality of life due to its non-specific demonstration. Nanoparticle-based drug delivery could enhance the specificity of chemo-drug to cancer cell but not resolve multi-drug resistance. To enhance the chemotherapeutic efficiency, we design triblock copolymer PEG-b-PDMAEMA-b-PDPA with different chain length and derivative random copolymer, PEG-b-(PDMAEMA-r-PDPA), which various polymeric materials could also catch and release small-interfering RNA and doxorubicin. The pH-responsiveness, drug-loading efficiency, and condensation efficiency of siRNA would be manipulated by the chain length of PDMAEMA. PEG113-b-PDMAEMA43-b-PDPA54 self-assembled micelles demonstrated doxorubicin loading efficiency as high as 70%. The in vitro release of Dox from siRNA/Dox-encapsulated PEG113-b-PDMAEMA43-b-PDPA54 micelles are 54% at pH=7.4 and 93% at pH=5.0, which showed the pH-responsive release activity. Together with in-depth investition of catch-and–release activity and facile formulation, PEG113-b-PDMAEMA43-b-PDPA54 self-assembled micelles would provide a new platform for gene/chemo combination delivery.

    摘要 I Abstract II 謝誌 III 目錄 IV 圖目錄 IX 表目錄 XIV 式目錄 XV 附錄 XVI 第一章 文獻回顧 1 1-1 癌症 (Cancer) 1 1-1-1 癌症之分類 1 1-1-2 致癌基因與腫瘤抑癌基因 (Oncogene and Tumor Suppressor Gene) 2 1-2 癌症治療 (Cancer Treatments) 4 1-2-1 化學治療 (Chemotherapy) 4 1-2-2 化學治療的限制 7 1-2-3 基因治療 (Gene Therapy) 9 1-2-4 基因治療的限制 11 1-3 奈米載體應用於癌症治療 12 1-3-1 增強通透與滯留效應 (Enhanced Permeability and Retention Effect, EPR Effect) 12 1-3-2 核內體逃脫 (Endosomal Escape) 14 1-3-3 腫瘤微環境 (Tumor Microenvironment) 16 1-4 刺激響應型奈米載體 (Stimuli-Responsive Nanocarriers) 19 1-4-1 酸鹼響應型奈米載體 (pH-Responsive Nanocarriers) 20 1-4-2 氧化還原響應型奈米載體 (Redox-Responsive Nanocarriers) 23 1-4-3 酵素響應型奈米載體 (Enzyme-Responsive Nanocarriers) 24 1-4-4 光響應型奈米載體 (Photo-Responsive Nanocarriers) 25 1-5 原子轉移自由基聚合反應 (Atom Transfer Radical Polymerization, ATRP) 27 1-6 研究動機 31 第二章 探討酸鹼響應之二合一奈米藥物平台其基因與化療藥物攜帶及釋放情形 32 2-1 實驗設計 32 2-2 三嵌段共聚物 (Triblock Copolymer) 與隨機共聚物 (Random Copolymer) 之合成與鑑定 34 2-2-1 聚乙二醇引發劑 (PEG113-Br) 之合成 34 2-2-2 Poly(ethylene glycol)-b-poly(2-(dimethylamino) ethyl methacrylate)-b-poly (2-(diisopropylamino) ethyl methacrylate) (PEG-b-PDMAEMA-b-PDPA) 三嵌段共聚物之聚合反應 35 2-2-3 Poly(ethylene glycol)-b-(poly(2-(dimethylamino) ethyl methacrylate)-r-poly (2-(diisopropylamino) ethyl methacrylate)) (PEG-b-(PDMAEMA-r-PDPA)) 隨機共聚物之聚合反應 36 2-3 PEG-b-PDMAEMA-b-PDPA 與 PEG-b-(PDMAEMA-r-PDPA) 之特性與酸鹼響應分析 38 2-3-1 臨界微胞濃度 (Critical Micelle Concentration, CMC) 之測定 38 2-3-2 酸鹼滴定 40 2-3-3 高分子對酸鹼值之靈敏度測定 43 2-3-4 高分子微胞之製備與粒徑分析 46 2-3-5 酸鹼值對高分子微胞粒徑之影響 48 2-4 以 PEG-b-PDMAEMA-b-PDPA 與 PEG-b-(PDMAEMA-r-PDPA) 同時攜帶小干擾核糖核酸與阿黴素 51 2-4-1 製備包覆阿黴素之高分子微胞與測量包覆效率 51 2-4-2 酸鹼值對包覆阿黴素之高分子微胞粒徑影響 55 2-4-3 製備同時攜帶小干擾核糖核酸與阿黴素之高分子微胞與測量包覆效率 57 2-4-4 包覆小干擾核糖核酸與阿黴素之高分子微胞於不同酸鹼值下釋放阿黴素之情形 61 2-5 結論 63 第三章 利用含芘之高分子微胞以光觸發釋放小干擾核糖核酸與阿黴素 64 3-1 實驗設計 64 3-2 三嵌段共聚物 (Triblock Copolymer) 之合成與鑑定 65 3-2-1 含芘分子之單體合成 65 3-2-2 Poly(ethylene glycol)-b-poly(2-(dimethylamino) ethyl methacrylate) (PEG -b-PDMAEMA) 嵌段共聚物之聚合反應 67 3-2-3 Poly(ethylene glycol)-b-poly(2-(dimethylamino) ethyl methacrylate)-b-poly (1-pyrenylmethyl methacrylate) (PEG-b-PDMAEMA-b-PPy) 三嵌段共聚物之聚合反應 68 3-3 PEG-b-PDMAEMA-b-PPy 高分子微胞之製備與光響應分析 70 3-3-1 PEG-b-PDMAEMA-b-PPy 高分子微胞之製備與粒徑測量 70 3-3-2 PEG-b-PDMAEMA-b-PPy 高分子微胞以光觸發斷鍵之情形 71 3-4 以PEG-b-PDMAEMA-b-PPy 包覆阿黴素與藥物釋放情形 72 3-4-1 製備包覆阿黴素之高分子微胞與測量包覆效率 72 3-4-2 包覆阿黴素之 PEG-b-PDMAEMA-b-PPy 高分子微胞粒徑分析 75 3-4-3 以光觸發包覆阿黴素之高分子微胞釋放藥物 76 3-5 結論 80 第四章 藥品與儀器 81 第五章 參考文獻 84 第六章 附錄 89

    (1) Edge, S.; Compton, C. Ann. Surg. Oncol. 2010, 17, 1471-1474.
    (2) Bieging, K.; Mello, S.; Attardi, L. Nat. Rev. Cancer 2014, 14, 359-370.
    (3) Gilman, A. Am. J. Surg. 1963, 105, 574-578.
    (4) Farber, S.; Diamond, L.; Mercer, R.; Sylvester, R.; Wolff, J. N. Engl. J. Med. 1948, 238, 787-793.
    (5) Chabner, B.; Roberts, T. Nat. Rev. Cancer 2005, 5, 65-72.
    (6) Nitiss, J. Nat. Rev. Cancer 2009, 9, 338-350.
    (7) Wang, D.; Lippard, S. Nat. Rev. Drug Discovery 2005, 4, 307-320.
    (8) Wilhelm, S.; Carter, C.; Lynch, M.; Lowinger, T.; Dumas, J.; Smith, R.; Schwartz, B.; Simantov, R.; Kelley, S. Nat. Rev. Drug Discovery 2006, 5, 835-844.
    (9) Shipitsin, M.; Campbell, L.; Argani, P.; Weremowicz, S.; Bloushtain-Qimron, N.; Yao, J.; Nikolskaya, T.; Serebryiskaya, T.; Beroukhim, R.; Hu, M.; Halushka, M.; Sukumar, S.; Parker, L.; Anderson, K.; Harris, L.; Garber, J.; Richardson, A.; Schnitt, S.; Nikolsky, Y.; Gelman, R.; Polyak, K. Cancer Cell 2006, 11, 259-273.
    (10) Creixell, M.; Peppas, N. Nano Today 2012, 7, 367-379.
    (11) Helleday, T.; Petermann, E.; Lundin, C.; Hodgson, B.; Sharma, R. Nat. Rev. Cancer 2008, 8, 193-204.
    (12) Chen, C.; Chin, J.; Ueda, K.; Clark, D.; Pastan, I.; Gottesman, M.; Roninson, I. Cell 1986, 47, 381-389.
    (13) Ichim, G.; Tait, S. Nat. Rev. Cancer 2016, 16, 539-548.

    (14) Soutschek, J.; Akinc, A.; Bramlage, B.; Charisse, K.; Constien, R.; Donoghue, M.; Elbashir, S.; Geick, A.; Hadwiger, P.; Harborth, J.; John, M.; Kesavan, V.; Lavine, G.; Pandey, R.; Racie, T.; Rajeev, K.; Röhl, I.; Toudjarska, I.; Wang, G.; Wuschko, S.; Bumcrot, D.; Koteliansky, V.; Limmer, S.; Manoharan, M.; Vornlocher, H.-P. Nature 2004, 432, 173-178.
    (15) Collinet, P.; Vereecque, R.; Sabban, F.; Vinatier, D.; Leblanc, E.; Narducci, F.; Querleu, D.; Quesnel, B. J. Obstet. Gynaecol. Res. 2006, 32, 449-453.
    (16) Whitehead, K.; Langer, R.; Anderson, D. Nat. Rev. Drug Discovery 2009, 8, 129-138.
    (17) Pritchard, C.; Cheng, H.; Tewari, M. Nat. Rev. Genet. 2012, 13, 358-369.
    (18) Wittrup, A.; Lieberman, J. Nat. Rev. Genet. 2015, 16, 543-552.
    (19) Pecot, C.; Calin, G.; Coleman, R.; Lopez-Berestein, G.; Sood, A. Nat. Rev. Cancer 2010, 11, 59-67.
    (20) Buyens, K.; Smedt, S.; Braeckmans, K.; Demeester, J.; Peeters, L.; Grunsven, L.; Jeu, X.; Sawant, R.; Torchilin, V.; Farkasova, K.; Ogris, M.; Sanders, N. J. Controlled Release 2012, 158, 362-370.
    (21) Dilnawaz, F.; Singh, A.; Mohanty, C.; Sahoo, S. Biomaterials 2010, 31, 3694-3706.
    (22) Chen, J.; Qiu, X.; Ouyang, J.; Kong, J.; Zhong, W.; Xing, M. Biomacromolecules 2011, 12, 3601-3611.
    (23) Matsumura, Y.; Maeda, H. Cancer Res. 1986, 46, 6387-6392.
    (24) Fonseca, C.; Simões, S.; Gaspar, R. J. Controlled Release 2002, 83, 273-286.
    (25) Nakanishi, T.; Fukushima, S.; Okamoto, K.; Suzuki, M.; Matsumura, Y.; Yokoyama, M.; Okano, T.; Sakurai, Y.; Kataoka, K. J. Controlled Release 2001, 74, 295-302.
    (26) Panahi, Y.; Farshbaf, M.; Mohammadhosseini, M.; Mirahadi, M.; Khalilov, R.; Saghfi, S.; Akbarzadeh, A. Artif. Cells Nanomed. Biotechnol. 2017, 45, 788-799.
    (27) Elsabahy, M.; Wooley, K. Chem. Soc. Rev. 2012, 41, 2545-2561.
    (28) Dinarvand, R.; nima Sepehri; Manouchehri; Rouhani; Atyabi, F. Int. J. Nanomedicine 2011, 877-895.
    (29) Pack, D.; Hoffman, A.; Pun, S.; Stayton, P. Nat. Rev. Drug Discovery 2005, 4, 581-593.
    (30) Li, W.; Nicol, F.; Szoka, F. Adv. Drug Delivery Rev. 2004, 56, 967-985.
    (31) Zelphati, O.; Szoka, F. Proc. Natl. Acad. Sci. U.S.A.1996, 93, 11493-11498.
    (32) Cabral, H.; Nakanishi, M.; Kumagai, M.; Jang, W.-D.; Nishiyama, N.; Kataoka, K. Pharm. Res. 2009, 26, 82-92.
    (33) Boussif, O.; Lezoualc’h, F.; Zanta, M.; Mergny, M.; Scherman, D.; Demeneix, B.; Behr, J. Proc. Natl. Acad. Sci. 1995, 92, 7297-7301.
    (34) Haensler, J.; Szoka, F. Bioconjugate Chem. 1993, 4, 372-379.
    (35) Gatenby, R.; Gillies, R. Nat. Rev. Cancer 2004, 4, 891-899.
    (36) Kessenbrock, K.; Plaks, V.; Werb, Z. Cell 2010, 141, 52-67.
    (37) Cheng, R.; Meng, F.; Deng, C.; Zhong, Z. Nano Today 2015, 10, 656-670.
    (38) Trachootham, D.; Alexandre, J.; Huang, P. Nat. Rev. Drug Discovery 2009, 8, 579-591.
    (39) Xiong, X.-B.; Lavasanifar, A. ACS Nano 2011, 5, 5202-5213.
    (40) Zheng, C.; Zheng, M.; Gong, P.; Deng, J.; Yi, H.; Zhang, P.; Zhang, Y.; Liu, P.; Ma, Y.; Cai, L. Biomaterials 2013, 34, 3431-3438.
    (41) Saraswathy, M.; Gong, S. Mater. Today 2014, 17, 298-306.
    (42) Mura, S.; Nicolas, J.; Couvreur, P. Nat. Mater. 2013, 12, 991-1003.
    (43) Harris, J.; Chess, R. Nat. Rev. Drug Discovery 2003, 2, 214-221.
    (44) Byrne, J.; Betancourt, T.; Brannon-Peppas, L. Adv. Drug Delivery Rev. 2008, 60, 1615-1626.
    (45) Min, K.; Kim, J.-H.; Bae, S.; Shin, H.; Kim, M.; Park, S.; Lee, H.; Park, R.-W.; Kim, I.-S.; Kim, K.; Kwon, I.; Jeong, S.; Lee, D. J. Controlled Release 2010, 144, 259-266.
    (46) Chen, W.; Yuan, Y.; Cheng, D.; Chen, J.; Wang, L.; Shuai, X. Small 2014, 10, 2678-2687.
    (47) Aryal, S.; Hu, C.-M.; Zhang, L. ACS Nano 2010, 4, 251-258.
    (48) Sun, H.; Guo, B.; Li, X.; Cheng, R.; Meng, F.; Liu, H.; Zhong, Z. Biomacromolecules 2010, 11, 848-854.
    (49) Chen, W.-H.; Luo, G.-F.; Lei, Q.; Jia, H.-Z.; Hong, S.; Wang, Q.-R.; Zhuo, R.-X.; Zhang, X.-Z. Chem. Commun. 2015, 51, 465-468.
    (50) Liu, G.-Y.; Chen, C.-J.; Li, D.-D.; Wang, S.-S.; Ji, J. J. Mater. Chem. 2012, 22, 16865-16871.
    (51) Zhao, X.; Qi, M.; Liang, S.; Tian, K.; Zhou, T.; Jia, X.; Li, J.; Liu, P. ACS Appl. Mater. Interfaces 2016, 8, 22127-22134.
    (52) Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Macromolecules 1995, 28, 1721-1723.
    (53) Wang, J.-S.; Matyjaszewski, K. J. Am. Chem. Soc. 1995, 117, 5614-5615.
    (54) Tang, W.; Tsarevsky, N.; Matyjaszewski, K. J. Am. Chem. Soc. 2006, 128, 1598-1604.
    (55) Tang, W.; Kwak, Y.; Braunecker, W.; Tsarevsky, N.; Coote, M.; Matyjaszewski, K. J. Am. Chem. Soc. 2008, 130, 10702-10713.
    (56) Pintauer, T.; Matyjaszewski, K. Chem. Soc. Rev. 2008, 37, 1087-1097.
    (57) Tang, W.; Matyjaszewski, K. Macromolecules 2006, 39, 4953-4959.
    (58) Matyjaszewski, K.; Tsarevsky, N. Nat. Chem. 2009, 1, 276-288.
    (59) Richard, R.; Schwarz, M.; Ranade, S.; Chan, A.; Matyjaszewski, K.; Sumerlin, B. Biomacromolecules 2005, 6, 3410-3418.
    (60) Jones, M.-C.; Ranger, M.; Leroux, J.-C. Bioconjugate Chem. 2003, 14, 774-781.
    (61) Oh, J.; Siegwart, D.; Lee, H.; Sherwood, G.; Peteanu, L.; Hollinger, J.; Kataoka, K.; Matyjaszewski, K. J. Am. Chem. Soc. 2007, 129, 5939-5945.
    (62) Zhou, K.; Wang, Y.; Huang, X.; Luby‐Phelps, K.; Sumer, B.; Gao, J. Angew. Chem., Int. Ed. 2011, 50, 6109-6114.
    (63) Urano, Y.; Asanuma, D.; Hama, Y.; Koyama, Y.; Barrett, T.; Kamiya, M.; Nagano, T.; Watanabe, T.; Hasegawa, A.; Choyke, P.; Kobayashi, H. Nat. Med. 2008, 15, 104-109.
    (64) Raichlin, S.; Sharon, E.; Freeman, R.; Tzfati, Y.; Willner, I. Biosens. Bioelectron. 2011, 26, 4681-4689.
    (65) Lin, Q.; Bao, C.; Yang, Y.; Liang, Q.; Zhang, D.; Cheng, S.; Zhu, L. Adv. Mater. 2013, 25, 1981-1986.

    QR CODE