簡易檢索 / 詳目顯示

研究生: 呂煉明
Lyu, Lian-Ming
論文名稱: 具形狀序列演變的氧化銀奈米粒子之合成、其不同晶面對化學蝕刻的相對穩定性、及藉由氧化銀奈米模版來形成硫化銀奈米籠
Synthesis of Ag2O Nanocrystals with Systematic Shape Evolution, Investigation of Their Facet Stability to Chemical Etching, and the Formation of Ag2S Nanocages Using the Ag2O Nanocrystal Templates
指導教授: 黃暄益
Huang, Michael Hsuan-Yi
口試委員: 黃暄益
王素蘭
楊家銘
葉晨聖
吳文偉
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 90
中文關鍵詞: 氧化銀硫化銀系列性蝕刻模板奈米
外文關鍵詞: Ag2O, Ag2S, systematic, etching, template, nano
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化銀為能隙1.46 eV的p-型半導體材料。氧化銀具有與氧化亞銅一樣的晶體結構,同為立方體的赤銅礦晶體。在此論文研究過程我們首先成功運用簡單的合成方法:固定氫氧化鈉、硝酸銀與硝酸銨之間的莫爾濃度比例,再調整試劑使用量,可以得到從立方體到八面體與六足體之間的序列演變。經由X-ray繞射、掃描式電子顯微鏡與穿透式電子顯微鏡鑑定,確定其結晶性與表面晶面。這是文獻中第一次能夠製備出如此具豐富形貌演變的氧化銀奈米晶體。
    我們進一步利用氧化銀的正方體、菱形立方八面體、八面體與長六足體來了解其不同晶面在氨水環境下的相對穩定性。實驗在蝕刻劑為氨水的鹼性環境下進行。利用精準控制氨水注射量,發現可以有具特定晶面的選擇性蝕刻,進而產生新的氧化銀奈米結構。銀銨錯合物的生成,是驅使蝕刻反應進行的動力,氫氧化鈉則扮演穩定晶面的角色。在設定的條件下,氧化銀表面晶面的穩定性由高到低分別為{111}晶面、{110}晶面和{100}晶面。換言之,{100}晶面最容易被侵蝕。
    在第三個工作中,採用氧化銀奈米結構當作模版,經由Kirkendall效應可將氧原子置換成硫原子,形成氧化銀–硫化銀的核殼結構與硫化銀的奈米籠。立方體與六足體的硫化銀奈米籠,都可經由相對應的氧化銀模版得到。另外也對立方體的氧化銀與氧化銀–硫化銀核殼結構進行循環電位量測,並結合掃描式電子顯微鏡觀測,第一次觀察到電化學氧化還原反應對化合物成分與形貌的影響。


    Silver(I) oxide (Ag2O) is a p-type semiconductor with a reported band gap of 1.46 eV. Ag2O has the same cubic cuprite crystal structure as that of Cu2O. In the first project, we have successfully developed a facile procedure for the synthesis of Ag2O nanocrystals with systematic shape evolution from cubic to octahedral and hexapod structures by adjusting the amounts of NH4NO3, AgNO3, and NaOH solutions added to make the reaction mixture, while keeping their molar ratios constant. The crystals are mostly sub-micrometer-sized. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy characterization have been used to determine their crystalline facets. This work represents one of the first reports to achieve synthesis of Ag2O nanocrystals with systematic shape evolution.
    In the next study, we used Ag2O nanocubes, rhombicuboctahedra, octahedra, and extended hexapods to examine the relative stability of different crystal faces of Ag2O by selectively etching the least stable faces. NH3 was used as the etchant. By carefully controlling the volume of NH3 solution injected, only a specific face was etched, resulting in the formation of new Ag2O nanostructures. Ag(NH3)2+ formed from dissolved silver ions should drive the etching process while NaOH tunes the reaction equilibrium to control morphology of the etched nanocrystals. The order of facet stability in this reaction was found to be {111} > {110} > {100}. The {100} faces are most easily etched.
    In the third work, the use of these Ag2O heterostructures as templates for the formation of Ag2O–Ag2S core–shell structures and Ag2S cages with morphology control via nanoscale Kirkendall effect was considered. Cubic and hexapod-shaped Ag2S nanocages were produced from Ag2O nanocrystals of corresponding shapes. Cyclic voltammetry curves and scanning electron microscopy images were taken on cubic Ag2O crystals and cubic Ag2O–Ag2S core–shell structures to examine the effects of electrochemical redox processes on the morphology and composition integrity of the initial particles for the first time.

    TABLE OF CONTENTS 論文摘要 I Abstract of The Dissertation II TABLE OF CONTENTS IV LIST OF TABLES VI LIST OF FIGURES VII LIST OF SCHEMES X LIST OF PUBLICATIONS XI CHAPTER 1 Synthesis of Ag2O Nanocrystals with Systematic Shape Evolution from Cubic to Hexapod Structures and Their Surface Properties 1 1.1 Introduction 1 1.2 Experimental Section 6 1.2.1 Chemicals 6 1.2.2 Synthesis of Ag2O Nanocrystals with Systematic Shape Evolution 6 1.2.3 Synthesis of Ag2O Octapods 7 1.2.4 Synthesis of Ag2O at different temperatures 8 1.2.5 Surface Property Examination 8 1.2.6 Instrumentation 9 1.3 Results and Discussion 9 1.4 Conclusion 37 1.5 References 38 CHAPTER 2 Investigation of Relative Stability of Different Facets of Ag2O Nanocrystals through Face-Selective Etching 40 2.1 Introduction 40 2.2 Experimental Section 42 2.2.1 Chemicals 42 2.2.2 Synthesis of Ag2O Nanocrystals with Systematic Shape Evolution 42 2.2.3 Etching Process 43 2.2.4 Instrumentation 44 2.3 Results and Discussion 45 2.4 Conclusions 59 2.5 References 59 CHAPTER 3 Ag2O Nanocrystal-Templated Growth of Ag2O–Ag2S Core–Shell Hetrostructures and Their Electrochemical Properties 61 3.1 Introduction 61 3.2 Experimental Section 63 3.2.1 Chemicals 63 3.2.2 Synthesis of Ag2O Nanocrystals with Systematic Shape Evolution 63 3.2.3 Formation of Ag2O–Ag2S core–shell structures and Ag2S nanocages 64 3.2.4 Instrumentation 65 3.3 Results and Discussion 66 3.4 Conclusion 86 3.5 References 88

    Chapter 1
    1.Ida, Y.; Watase, S.; Shinagawa, T.; Watanabe, M.; Chigane, M.; Inaba, M.; Tasaka, A.; Izaki, M. Chem. Mater. 2008, 20, 1254–1256.
    2.Kuo, C.-H.; Chen, C.-H.; Huang, M. H. Adv. Funct. Mater. 2007, 17, 3773–3780.
    3.Kuo, C.-H.; Huang, M. H. J. Phys. Chem. C 2008, 112, 18355–18360.
    4.Ho, J.-Y.; Huang, M. H. J. Phys. Chem. C 2009, 113, 14159–14164.
    5.Kuo, C.-H.; Huang, M.H. Nano Today 2010, 5, 106-116.
    6.Wang, D.; Mo, M.; Yu, D.; Xu, L.; Li, F.; Qian, Y. Cryst. Growth Des. 2003, 3, 717–720.
    7.Kuo, C.-H.; Huang, M. H. J. Am. Chem. Soc. 2008, 130, 12815–12820.
    8.Liang, X.; Gao, L.; Yang, S.; Sun, J. Adv. Mater. 2009, 21, 2068–2071.
    9.Siegfried, M. J.; Choi, K.-S. J. Am. Chem. Soc. 2006, 128, 10356–10357.
    10.Siegfried, M. J.; Choi, K.-S. Angew. Chem., Int. Ed. 2005, 44, 3218–3223.
    11.Li, H.; Liu, R.; Zhao, R.; Zheng, Y.; Chen, W.; Xu, Z. Cryst. Growth Des. 2006, 6, 2795–2798.
    12.Chang, Y.; Zeng, H. C. Cryst. Growth Des. 2004, 4, 273–278.
    13.Read, C. G.; Steinmiller, E. M. P.; Choi, K.-S. J. Am. Chem. Soc. 2009, 131, 12040–12041.
    14.Kuo, C.-H.; Hua, T.-E.; Huang, M. H. J. Am. Chem. Soc. 2009, 131, 17871–17878.
    15.Murray B. J.; Li, Q.; Newberg, J. T.; Menke, E. J.; Hemminger, J. C.; Penner, R, M. Nano Lett. 2005, 5, 2319–2324.
    16.Fang, J.; Leufke, P.-M.; Kruk, R.; Wang, D.; Scherer, T.; Hahn, H. Nano Today, 2010, 5, 175-182.
    17.Wang, X.; Wu, H.-F.; Kuang, Q.; Huang, R.-B.; Xie, Z.-X.; Zheng, L.-S. Langmuir 2010, 26, 2774-2778.
    18.Zhou, W.; Yan, B.; Cheng, C.; Cong, C.; Hu, H.; Fan, H.; Yu, T. CrystEngComm 2009, 11, 2291–2296.
    19.Liu, X.; Huang, R.; Zhu, J. Chem. Mater. 2008, 20, 192–197.
    Chapter 2
    1.Ida, Y.; Watase, S.; Shinagawa, T.; Watanabe, M.; Chigane, M.; Inaba, M.; Tasaka, A.; Izaki, M. Chem. Mater. 2008, 20, 1254–1256.
    2.Zhou, M.-B.; Wei, W.-T.; Xie, Y.-X.; Lei, Y.; Li, J.-H. J. Org. Chem. 2010, 75, 5635–5642.
    3.Murray, B. J.; Li, Q.; Newberg, J. T.; Menke, E. J.; Hemminger, J. C.; Penner, R. M. Nano Lett. 2005, 5, 2319–2324.
    4.Wang, X.; Wu, H.-F.; Kuang, Q.; Huang, R.-B.; Xie, Z.-X.; Zheng, L.-S. Langmuir 2010, 26, 2774–2778.
    5.Lyu, L.-M.; Wang, W.-C.; Huang, M. H. Chem. Eur. J. 2010, 16, 14167–14174.
    6.Fang, J.; Leufke, P. M.; Kruk, R.; Wang, D.; Scherer, T.; Hahn, H. Nano Today 2010, 5, 175–182.
    7.Yan, Z.; Bao, R.; Chrisey, D. B. Langmuir 2011, 27, 851–855.
    8.Kuo, C.-H.; Huang, M. H. J. Phys. Chem. C 2008, 112, 18355–18360.
    9.Ho, J.-Y.; Huang, M. H. J. Phys. Chem. C 2009, 113, 14159–14164.
    10.Kuo, C.-H.; Huang, M. H. Nano Today 2010, 5, 106–116.
    11.Kuo, C.-H.; Hua, T.-E.; Huang, M. H. J. Am. Chem. Soc. 2009, 131, 17871–17878.
    12.Kuo, C.-H.; Huang, M. H. J. Am. Chem. Soc. 2008, 130, 12815–12820.
    13.Hua, Q.; Shang, D.; Zhang, W.; Chen, K.; Chang, S.; Ma, Y.; Jiang, Z.; Yang, J.; Huang, W. Langmuir 2011, 27, 665–671
    Chapter 3
    1.Tomaszewicz, E.; Kurzawa, M. J. Mater. Sci. 2004, 39, 2183–2185.
    2.Jiang, P.; Tian, Z.-Q.; Zhu, C.-N.; Zhang, Z.-L.; Pang, D.-W. Chem. Mater. 2012, 24, 3–5.
    3.Morales-Masis, M.; van der Molen, S. J.; Fu, W. T.; Hesselberth, M. B.; van Ruitenbeek, J. M. Nanotechnology 2009, 20, 095710.
    4.Terabe, K.; Hasegawa, T.; Nakayama, T.; Aono, M. Nature 2005, 433, 47–50.
    5.Wang, H. L.; Qi, L. M. Adv. Funct. Mater. 2008, 18, 1249–1256.
    6.Xu, Z.; Bando, Y.; Wang, W. L.; Bai, X. D.; Golberg, D. Acs Nano 2010, 4, 2515–2522.
    7.Wang, D.; Hao, C.; Zheng, W.; Peng, Q.; Wang, T.; Liao, Z.; Yu, D.; Li, Y. Adv. Mater. 2008, 20, 2628–2632.
    8.Du, Y. P.; Xu, B.; Fu, T.; Cai, M.; Li, F.; Zhang, Y.; Wang, Q. B. J. Am. Chem. Soc. 2010, 132, 1470–1471.
    9.Zhang, Y.; Hong, G. S.; Zhang, Y. J.; Chen, G. C.; Li, F.; Dai, H. J.; Wang, Q. B. Acs Nano 2012, 6, 3695–3702.
    10.Liu, M. Z.; Guyot-Sionnest, P. J. Mater. Chem. 2006, 16, 3942–3945.
    11.Zhu, J. M.; Shen, Y. H.; Xie, A. J.; Zhu, L. J. Mater. Chem. 2009, 19, 8871–8875.
    12.Kuo, C. H.; Yang, Y. C.; Gwo, S.; Huang, M. H. J. Am. Chem. Soc. 2011, 133, 1052–1057.
    13.Xiong, S. L.; Zeng, H. C. Angew. Chem., Int. Ed. 2012, 51, 949–952.
    14.Kuo, C.-H.; Chu, Y.-T.; Song, Y.-F.; Huang, M. H. Adv. Funct. Mater. 2011, 21, 792–797.
    15.Wang, Z. Y.; Zhou, L.; Lou, X. W. Adv. Mater. 2012, 24, 1903–1911.
    16.Yin, Y. D.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P. Science 2004, 304, 711–714.
    17.Singh, P.; Parent, K. L.; Buttry, D. A. J. Am. Chem. Soc. 2012, 134, 5610–5617.
    18.Ghilane, J.; Fan, F. R. F.; Bard, A. J.; Dunwoody, N. Nano Lett. 2007, 7, 1406–1412.
    19.Lyu, L.-M.; Wang, W.-C.; Huang, M. H. Chem.–Eur. J. 2010, 16, 14167–14174.
    20.Hsu, J.; Fuentes-Hernandez, C.; Ernst, A. R.; Hales, J. M.; Perry, J. W.; Kippelen, B. Opt. Express 2012, 20, 8629–8640.
    21.Wei, W. F.; Mao, X. H.; Ortiz, L. A.; Sadoway, D. R. J. Mater. Chem. 2011, 21, 432–438.
    22.Pang, M.; Hu, J.; Zeng, H. C. J. Am. Chem. Soc. 2010, 132, 10771–10785.
    23.Kim, C. M.; Jeong, H. S.; Kim, E. H. Surf. Sci. 2000, 459, L457–L461.
    24.Lyu, L.-M.; Huang, M. H. J. Phys. Chem. C 2011, 115, 17768–17773.
    25.Abd El Rehim, S. S.; Hassan, H. H.; Ibrahim, M. A. M.; Amin, M. A. Mon. Chem. 1998, 129, 1103–1117.
    26.Zhang, M.; Chiu, T.-L.; Lin, C.-F.; Lee, J.-H.; Wang, J.-K.; Wu, Y. Sol. Energy Mater. Sol. Cells 2011, 95, 2606–2609.
    27.Terabe, K.; Nakayama, T.; Hasegawa, T.; Aono, M. J. Appl. Phys. 2002, 91, 10110–10114.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE