研究生: |
張詣鑫 |
---|---|
論文名稱: |
燃料混燒鍋爐氧氣濃度控制 |
指導教授: | 鄭西顯 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 40 |
中文關鍵詞: | 鍋爐 、混燒 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一個典型的鋼鐵廠鍋爐所使用之燃料有許多種,如COG
(煉焦爐氣)、BFG(高爐氣和轉爐氣混合而成)、天然氣、LSO(低硫油)、煤等。其中BFG為高爐氣和轉爐氣混合而成,而混合比例每個時間不一樣,因此BFG熱值隨時間一直在變動,鋼鐵廠鍋爐之效率不容易控制,在本研究中,利用統計方法研究影響鍋爐效率之重要變數。針對部分數據作stepwise regression尋找重要變數,在利用複迴歸得到鍋爐效率之模型,而模型對鍋爐效率之評估利用Kalman filter理論減少估計的誤差,最後再建立一個虛擬工廠,證實能夠提升燃料混燒鍋爐之熱效率。
1. Bortz, Steven, “Apparatus and method for reducing NOx, CO and hydrocarbon emissions when burning gaseous fuels”, Applied Thermal Engineering Volume: 16, Issue: 8-9, August 9, 1996, pp. VII
2. Hao, Zhou; Kefa, Cen; Jianbo, Mao, “Combining neural network and genetic algorithms to optimize low NOx pulverized coal combustion”, Fuel Volume: 80, Issue: 15, December, 2001, pp. 2163-2169.
3. Nishimura, M.; Suzuki, T.; Nakanishi, R.; Kitamura, R., “Low-NOx combustion under high preheated air temperature condition in an industrial furnace”, Volume: 38, Issue: 10-13, September 7, 1997, pp. 1353-1363
4. Tsay and Lin, “Application of evolutionary programming to optimal operational strategy cogeneration system under time-of-use rates”, Electrical Power and Energy Systems, 22 , 2000, pp. 367–373.
5. Wu, T.Y., Shieh, S.S., Shi-Shang Jang and Colin C.L. Liu, “Optimal Energy Management Integration for a Petrochemical Plant under Considerations of Uncertain Power Supplies”, IEEE tran. on power system, 2005, 20, 3, 1431-1439,.
6. Ma, H. K. and Wu, F. S., Effect of BFG on unburned carbon formation in a coal-fired boiler, Int. Comm. Heat Mass Transfer, 19, 409-421, 1992.
7. Kiga, T., Ito, T., Nakamura, M. and Watanabe S., Development of blast-furnaace gas firing burner for cofiring boilers with pulverized coal, Impact of Mineral Impurities in Solid Fuel Combustion, ed. By Gupta et al., Kluwer Academic / Plenum Publishers, New York, 1999.
8. Gicquel, O., Vervisch, L., Joncquet, G., Labegorre, B. and Darabiha, N., Combustion of residual steel gases: laminar flame analysis and turbulent flamelet modeling, Fuel, 82, 2003, 983-991.
9. Kouprianov, V.I., Tanetsakunvatana, V., "Optimization of excess air for the improvement of environmental performance of a 150 MW boiler fired with Thai lignite", Applied Energy, v 74, n 3-4, March/April, 2003, p 445-453.
10. Kaewboonsong, W. and Kouprianov, V. I., "Minimizing fuel and external costs for a variable-load utility boiler firing fuel oil", Internation Journal of Thermal Science, 42, 889-895, 2003.
11. Kouprianov, V. I. and Kaewboonsong, W., "Modeling the effects of operating conditions on fuel and environmental costs for a 310 MW boiler firing fuel oil", Energy Conversion and Management, 45, 1-14, 2004.
12. Tanetsakunvatana, V., Kuprianov V.I., "Experimental study on effects of operating conditions and fuel quality on thermal efficiency and emission performance of a 300-MWboiler unit firing Thai lignite", Volume: 88, Issue: 2, February, 2007, pp. 199-206
13. Engin Ozdemir, “Energy conservation opportunities with a variable speed controller in a boiler house”, Applied Thermal Engineering Volume: 24, Issue: 7, May, 2004, pp. 981-993.
14. Rusinowski, H.; Stanek, W., “Neural modelling of steam boilers”, Energy Conversion and Management Volume: 48, Issue: 11, November, 2007, pp. 2802-2809.
15. Turn, Scott Q.; Jenkins, Bryan M.; Jakeway, Lee A.; Blevins, Linda G.; Williams, Robert B., “Test results from sugar cane bagasse and high fiber cane co-fired with fossil fuels“, Biomass and Bioenergy, Volume: 30, Issue: 6, June, 2006, pp. 565-574
16. 蘇聖凱,火力電廠與汽電共生之性能評估,國立台灣大學機械工程學系研究所碩士論文,1999