簡易檢索 / 詳目顯示

研究生: 陸志德
Chih-Teh Luh
論文名稱: 高科技產業相關水體中揮發性有機物分析之研究
VOCs Analysis in the Effluent Water Samples of Hi-tech Industries
指導教授: 羅俊光
Jiunn-Guang Lo
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2000
畢業學年度: 88
語文別: 中文
論文頁數: 156
中文關鍵詞: 揮發性有機物吹氣捕捉高科技產業水樣分析固態微萃取極性物質
外文關鍵詞: VOCs, purge and trap (P&T), Hi-tech industries, water analysis, solid phase microextraction (SPME), polar species
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要以P&T/GC/MS與SPME/GC/FID雙系統併行的方式,來進行高科技產業相關水體中VOCs的採樣分析,由於P&T技術對於非極性VOCs的分析效果卓著,然而其無法對極性VOCs具有很好的前處理效果,因此針對極性VOCs的部分便利用SPME方法來進行前處理,以期能夠獲得更準確的極性VOCs測值。
    於P&T部分本研究主要參考美國環保署Method 624與國內環保署之NIEA.W785.50B標準方法來建立系統,目前本研究所完成的P&T/GC/MS系統可對50種以上的VOCs做準確定性定量,在SPME的部分完成了最佳化測試與校正實驗,經由最佳化測試的過程中發現對四個目標極性物種acetone、IPA、PGMEA與EL的偵測能力可達到ppb級,於十點校正測試中發現R2均於0.985以上,且在QA/QC測試中發現各物種之RSD均小於10%,相較於P&T對四待測物種之最佳R2小於0.94,可知對極性VOCs而言SPME優於P&T,不過本研究的SPME平衡時間較長,處理一個樣品須一小時以上。

    在真實樣品測試方面,測定目標為科學園區內某污水處理廠與其排放管道水質,結果顯示濃度在ppm級的acetone為最主要的極性污染物,至於在非極性部分則以100 ppb級的toluene為主,此外於生物處理過後會產生超過100 ppb的DMS,其為臭味的主因。由於這些物種於排放管道中均有測得,亦即這些物種均會造成承受水體的污染,顯示該廠在VOCs控制方面依然有待加強。


    The major objective in this study is to apply different techniques to analyze the polar and nonpolar volatile organic compounds (VOCs) in the waste streams of Hi-tech industries. The purge and trap (P&T) technique is known for its excellent extraction efficiency in the analysis of nopolar compounds. However for polar compounds, P&T shows poor linearity and precision. Due to the advantages of solventless and low setup cost, solid phase microextraction (SPME) had been chosen for the analysis of polar compounds.
    In the P&T experiments, all the steps and criteria were followed by US EPA Method 624 and Method NIEA.W785.50B of R.O.C. EPA. Over 50 kinds of VOC can be analyzed by the P&T/GC/MS system in this study. For SPME experiments, both optimization and calibration were tested. According to the results of SPME, it shows good linearity (R2>0.985) and precision (RSD<10%) for four target compounds in this study. Hence SPME is much better than P&T in the linearity results of P&T (best R2<0.94) for polar VOCs analysis, although the equilibrium time of SPME is over 1 hour.

    All the real samples were collected from a wastewater treatment plant of the Hi-tech industries and the surroundings of its effluent. The major polar and nonpolar pollutant is acetone (over 1 ppm) and toluene (over 100 ppb) respectively. Odorous dimethyl sulfide (DMS) was formed in the wastewater after biological unit. Besides, DMS and acetone were still existing in the samples collected from the surroundings of its effluent. These compounds are likely the reason of odor problem in the surroundings. Hence the VOCs control of the treatment plant has to be enforced in the future.

    摘要-----------------------------------------------------------------------i 英文摘要(Abstract)----------------------------------------------------ii 總目錄------------------------------------------------------------------iii 圖目錄------------------------------------------------------------------vi 表目錄------------------------------------------------------------------ix 誌謝---------------------------------------------------------------------xi 第一章 緒論-----------------------------------------------------------1 1-1 研究緣起---------------------------------------------------------------------1 1-2 研究目的---------------------------------------------------------------------3 1-3 研究方法---------------------------------------------------------------------6 第二章 文獻回顧-----------------------------------------------------8 2-1 吹氣捕捉/氣相層析質譜(P&T/GC/MS)方法概要------------------8 2-1-1 吹氣捕捉/氣相層析質譜系統原理-----------------------------------8 2-1-2 吹氣捕捉/氣相層析質譜技術操作參數探討---------------------12 2-1-3 吹氣捕捉/氣相層析質譜技術特點---------------------------------13 2-1-4 吹氣捕捉技術新近發展----------------------------------------------15 2-2 固態微萃取(SPME)方法概要-----------------------------------------16 2-2-1 固態微萃取原理-------------------------------------------------------16 2-2-2 固態微萃取實驗操作參數探討-------------------------------------21 2-2-3 固態微萃取之基質干擾(matrix effect)----------------------------32 2-2-4 固態微萃取技術未來展望-------------------------------------------36 2-3 水中VOCs與環境之間的關係----------------------------------------37 2-3-1 水處理時VOCs之生成-----------------------------------------------37 2-3-2 水中VOCs之移除模式-----------------------------------------------39 第三章 研究方法-------------------------------------------------44 3-1 吹氣捕捉/氣相層析質譜系統部份---------------------------------44 3-1-1 實驗設備與藥品-------------------------------------------------------44 3-1-2 實驗流程----------------------------------------------------------------46 3-1-3 其他品保品管(QA/QC)規範-----------------------------------------54 3-2 固態微萃取/氣相層析系統部份------------------------------------56 3-2-1 實驗設備與藥品-------------------------------------------------------56 3-2-2 實驗流程----------------------------------------------------------------57 3-3 真實樣品實驗-----------------------------------------------------------66 3-3-1 採樣----------------------------------------------------------------------66 3-3-2 科學園區內某污水處理廠之採樣規劃----------------------------69 3-3-3 某污水處理廠排放管道之採樣規劃-------------------------------70 3-4 其他品保品管規範-----------------------------------------------------72 第四章 結果與討論-------------------------------------------------74 4-1 吹氣捕捉/氣相層析質譜系統實驗結果與討論---------------------74 4-1-1 吹氣捕捉/氣相層析質譜系統檢量線結果與RRF探討---------74 4-1-2 吹氣捕捉/氣相層析質譜系統MDL實驗結果探討--------------76 4-1-3 吹氣捕捉/氣相層析質譜系統recovery與RSD探討------------79 4-1-4 吹氣捕捉/氣相層析質譜系統檢量線篩選探討------------------82 4-2 固態微萃取實驗結果與討論-------------------------------------------83 4-2-1 固態微萃取最佳化實驗探討----------------------------------------83 4-2-2 固態微萃取線性與MDL實驗探討---------------------------------91 4-2-3 固態微萃取QA/QC測試結果探討---------------------------------98 4-3 真實樣品分析-----------------------------------------------------------101 4-3-1 污水處理廠樣品實測結果------------------------------------------101 4-3-2 廠外排放管道樣品檢測結果---------------------------------------114 第五章 結論---------------------------------------------------------118 5-1 結論-----------------------------------------------------------------------118 5-2 未來展望-----------------------------------------------------------------121 參考文獻--------------------------------------------------------------xii 附錄-------------------------------------------------------------------xvii

    [1] 新竹科學工業園區管理局首頁,http://www.sipa.gov.tw
    [2] 國科會毫微米元件實驗室,"結合「光氧化-生物濾床」技術處理含有害性有機物之半導體製程有機廢水(期末報告)",行政院環保署研究計劃,EPA-88-G107-03-407,3月(民89年)
    [3] 行政院環保署,"飲用水中揮發性有機化合物檢測方法--吹氣捕捉氣相層析質譜儀法",(86)環署檢字第64267號,NIEA W785.50B,11月14日(民86年)
    [4] 國立清華大學,"新竹科學園區有害物監測分析(期末報告)",新竹科學工業園區管理局研究計劃,6月(民88年)
    [5] 工研院化工所,?年竹科環保白皮書(初稿)",新竹科學園區管理局,5月12日(民88年)
    [6] A. K. Sensel & E. T. Lewis, "Fundamentals of Purge and Trap", Application Note of Tekmar, Vol.5.4, Spring(1995).
    [7] U.S. EPA, "Method for Organic Chemical Analysis of Municipal and Industrial Wastewater, Method 624 - purgeables", U. S. EPA, 40CFR, Part 136, appendix A.
    [8] OI Analytical, "USEPA Method 524.2 Revision4 : Optimization of the Analysis of VOAs in Water by GC/MS", OI Analytical Application Note 13271198.
    [9] Homepage of Restek Corporation, "Guide to Analyzing Volatile Organics", http://www.restekcorp.com/voa/voa.htm
    [10] Homepage of OI Corporation, "Product Information - Model 4560 Purge-and-Trap Sample Concentrator", http://www.oico.com.
    [11] Homepage of Tekmar-Dohrmann Analysis and Lab Instrumentation Equipment, "Product Information - Purge and Trap Concentrator and Autosamplers", http://www.tekmar.com
    [12] A. K. Vickers & M. Datta, "A Purge and Trap System for Analyzing VOCs in Drinking Water", American Laboratory, January(1993)
    [13] V. J. Naughton, "The Effect of Trap Pressure Control (TPC) on the Chromatographic Resolution of Purgeable Gases", Application Note of Tekmar, Vol.4.5, Winter(1994).
    [14] 章啟鵬、鍾裕仁、魏燕君,"以GC/MS分析水體中揮發性有機物(VOC)之研究",第十三屆環境分析化學研討會論文,5月11日 (民88年)。
    [15] L. Lepine & J-F. Archambault, "Parts-per-Trillion Determination of Trihalomethanes in Water by Purge-and-Trap Gas Chromatography with Electron Capture Detection", Analytical Chemistry, Vol.64, No.7, April(1992).
    [16] 顏志育、張育嘉、洪益夫,"吹氣捕集與氣相層析儀連接裝置分析雨水中揮發性鹵化有機物污染之研究",第六屆環境分析化學研討會論文,4月24日(民81年)。
    [17] 鍾裕仁、李永清、章啟鵬、魏燕君,"水體中揮發性有機物質(VOC)的分析與應用",中興工程顧問社,九月(民86年)。
    [18] J. Twachtman, "Autosampling Options for Purge and Trap Concentrators", Application Note of Tekmar, Vol.4.6, Winter(1994).
    [19] S. Mitra, "Development of Membrane Purge and Trap for Measurement of Volatile Organics in Water", Analytical Letters, Vol.33, No.2, pp.367~379(1998).
    [20] M. Ligor and B. Buszewski, "Solid Phase Microextraction as a Method for Preparing Environmental Samples", Journal of Environmental Studies, Vol. 6, No. 5(1997)
    [21] P. Kuran and L. Sojak, "Review - Environmental Analysis of Volatile Organic Compounds in Water and Sediment by Gas Chromatography", Journal of Chromatography A, No.737, pp.119~141(1996).
    [22] Homepage of Sigma-Aldrich Corporation, Supelco Group, "Product Information of SPME", http://www.sigma-aldrich.com
    [23] J. L. Schnoor, "Environmental Modeling - Fate and Transport of Pollutants in Water, Air and soil", John Wiley & Sons Inc., pp.42~51, 328~331(1996).
    [24] Application Note of Supelco, "Solid Phase Microexaction : Theory and Optimization of Conditions", Bulletin 923, Supelco.
    [25] R. Eisert and K. Levsen, "Review - Solid Phase Microexaction Coupled to Gas Chromatography : A New Method for the Analysis of Organics in Water", Journal of Chromatography A, No.733, pp.143~157(1996).
    [26] B. Scafer and W. Engewald, "Enrichment of Nitrophenols from Water by Means of Solid-phase Microextraction", Fresenius Journal of Analytical Chemistry, Vol.352, pp.535~536(1995)
    [27] P. Popp and A. Paschke, "Solid Phase Microextraction of Volatile Organic Compounds Using Carboxen-Polydimethylsiloxane Fibers", Chromatographia, Vol.46, No.7/8, pp.419~424, October(1997)
    [28] C. Rivasseau and M. Caude, "Comparison of On-Line SPE-HPLC and SPME-GC for the Analysis of Microcontaminants in Water", Chromatographia, Vol.41, No.7/8, pp.462~470, October(1995)
    [29] Application Note of Supelco, "Optimizing SPME : Parameters to Control to Ensure Consistent Results", Note 95, Supelco.
    [30] Z. Zhang and J. Pawliszyn, "Sampling Volatile Organic Compounds Using a Modified Solid Phase Microextraction Device", Journal of High Resolution Chromatography, Vol.19, pp.155~160, March(1996)
    [31] A. Saraullo, P. A. Martos and J. Pawliszyn, "Water Analysis by Solid Phase Microextraction Based on Physical Chemical Properties of the Coating", Analytical Chemistry, Vol.69, No.11, pp.1992~1998, June(1997)
    [32] C. L. Authur and J. Pawliszyn, "Solid Phase Microextraction with Thermal Desorption Using Fused Silica Optical Fibers", Analytical Chemistry, Vol.62, No.19, pp.2145~2148, October(1990)
    [33] Dj. Dozan and Y. Assadi, "A New Porous-Layer Activated-Charcoal-Coated Fused Silica Fiber : Application for Determination of BTEX Compounds in Water Samples using Headspace Solid-Phase Microextraction and Capillary Gas Chromatography", Chromatographia, Vol.45, pp.183~189(1997)
    [34] S. D. Huang, C. H. Cheng and Y. H. Sung, "Determination of Benzene Derivatives in Water by Solid-Phase Microextraction", Analytica Chimica Acta, Vol.343, pp.101~108(1997)
    [35] M. Llompart, K. Li and M. Fingas, "Headspace Solid-Phase Microextraction for the Determination of Volatile and Semi-volatile Pollutants in Water and Air", Journal of Chromatography A, No.824, pp.53~61(1998)
    [36] V. L. Snoeyink and D. Jenkins, "Water Chemistry", 新智出版社, pp.80~82(1982)
    [37] A. A. Boyd-Boland and J. B. Pawliszyn, "Solid-Phase Microextraction of Nitrogen-Containing Herbicide", Journal of Chromatography A, Vol.704, pp.163-172(1995)
    [38] L. Muller, E. Fattore and E. Benfenati, "Determination of Aromatic Amines by Solid-Phase Microextractron and Gas Chromatography-Mass Spectrometry in Water Samples", Journal of Chromatography A, Vol.791, pp.221~230(1997)
    [39] J. Dewulf, H. Van Langenhove and M. Everaert, "Solid-Phase Microextraction of Volatile Organic Compounds Estimation of the Sorption Equilibrium from the Kovats Index, Effect of Salinity and Humic Acids and the Study of the Kinetics by the Development of an 'Agitated/Static Layer' Model", Journal of Chromatography A, Vol.761, pp.205~217(1997)
    [40] R. E. Shirey, "Optimization of Extraction Conditions for Low-Molecular-Weight Analytes Using Solid-Phase Microextraction", Journal of Chromatographic Science, Vol.38, pp.109~116(2000)
    [41] S. D. Huang, C. Y. Ting and C. S. Lin, "Determination of Haloethers in Water by Solid-Phase Microextraction", Journal of Chromatography A, Vol.769, pp.239~246(1997)
    [42] I. Valor, C. Cortada and J. C. Molto, "Direct Solid Phase Microextraction for the Determination of BTEX in Water and Wastewater", Journal of High Resolution Chromatography, Vol.19, pp.472~474, August(1996)
    [43] H. R. Rogers and S. D. W. Comber, "Solid Phase Microextraction Fiber Performance in Turbid Aqueous Samples", Chemosphere, Vol.37, No.8, pp.1413~1418(1998)
    [44] J. J. Langenfeld, S. B. Hawthome and D. J. Miller, "Quantitative Analysis of Fuel-Related Hydrocarbons in Surface Water and Wastewater Samples by Solid-Phase Microextraction", Analytical Chemistry, Vol.68, No.1, January(1996)
    [45] N. Huppert, M. Wurtele and H. H. Hahn, "Determination of the Plasticizer N-butylbenzenesulfonamide and the Pharmaceutical Ibuprofen in Wastewater Using Solid Phase Microextraction", Fresenius Journal of Analytical Chemistry, Vol.362, pp.529~536(1998)
    [46] Homepage of Varian Instrument Corporation, "Automation of the SPME Devices", http://www.varian.com
    [47] M. Chai and J. Pawliszyn, "Analysis of Environmental Air Samples by Solid-Phase Microextraction and Gas Chromatography/Ion Trap Mass Spectrometry", Environmental Science and Technology, Vol.29, No.3, pp.693~701(1995)
    [48] R. Eisert and K. Levsen, "Development of a Prototype System for Quasi-Continuous Analysis of Organic Contaminants in Surface or Sewage Water Based on In-line Coupling of Solid-Phase Microextraction to Gas Chromatography", Journal of Chromatography A, Vol.737, pp.59~65(1996)
    [49] B. L. Wittkamp and S. Hawthorne, "Determination of Aromatic Compounds in Water by Solid Phase Microextraction and Ultraviolet Absorption Spectroscopy. 1. Methodology", Analytical Chemistry, Vol.69, pp.1197~1203(1997)
    [50] D. C. Stahl and D. C. Tilotta, "Partition Infrared Method for Total Gasoline Range Organics in Water Based on Solid Phase Microextraction", Environmental Science and Technology, Vol.33, No.5, pp.814~819(1999)
    [51] Homepage of U.S. EPA, "Protocol to the 1979 Convention on Long-Range Transboundary Air Pollution Concerning the Control of Emissions of VOCs or their Transboundary Fluxes(1991)", http://www.epa.gov
    [52] 劉國棟,"VOCs管制趨勢展望",工業污染防治,48期,頁15,10月(民82年)
    [53] M. L. Davis and D. A. Cornwell, "Introduction to Environmental Engineering", 2nd Edition(International), McGraw-Hill Co. Ltd., pp.154(1991)
    [54] T. D. Reynolds and P. A. Richards, "Unit Operation and Process in Environmental Engineering", 2nd Edition, PWS Poblishing Co. Ltd, pp.81(1996)
    [55] D. H. Zitomer and R. E. Speece, "ES&T Critical Review - Sequential Environments for Enhanced Biotransformation of Aqueous Contaminants", Environmental Science and Technology, Vol.27, No.2, pp.226~244(1993)
    [56] H. F. Hemond and E. J. Fechner, "Chemical Fate and Transport in the Environment", 1st Edition, Academic Press Inc., pp.78~82(1994)
    [57] Metcalf & Eddy Inc., "Wastewater Engineering - Treatment, Disposal, and Reuse", 3rd Edition(International), McGraw-Hill Co. Ltd., pp.287~292(1991)
    [58] Merck, "Catalog of Reagents/Chemicals/Diagnostics - 1996", Merck Co. Ltd. (1996)
    [59] U.S. EPA, "Method TO-15, The Determination of Volatile Organic Compounds(VOCs) in Air Collected in Summa Canisters and Analyzed by Gas Chromatography/Mass Spectrometry(GC/MS)", U.S. EPA (1996)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE