簡易檢索 / 詳目顯示

研究生: 許裕宗
Yu-Zong Shu
論文名稱: 高效率發光二極體的光學模擬
Optical simulation for high efficiency LED
指導教授: 黃惠良
Huey-Liang Hwang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 51
中文關鍵詞: 發光二極體光學模擬
外文關鍵詞: LED, optical simulation
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 發光二極體具有很多的優點例如長的使用時間、高效率、高可靠度、指向性、對震動和撞擊的不敏感度、可微小封裝等。 近幾年來,,由於螢光燈將在不遠的將來被取代,高效率的白光發光二極體獲得極大的注目。 現今由於在磊晶技術的成熟發展下,具有高數值的內部量子效率的發光二極體已經可被獲得。然而發光二極體的光萃取效率經常低於40%。 另外,當發光二極體在各式各樣的應用特別是在固態照明的領域,遠場輻射場型變成一個非常重要的問題。
    為了提高覆晶發光二極體的光萃取效率,我們在藍寶石層及氮化鎵層之間設計不同粗化程度的表面結構。 這個粗化的表面結構可以減少發光二極體中光的全反射並增加光從晶片中逃脫的機率。 而為了預測發光二極體的遠場輻射場型,我們也針對實際封裝過的發光二極體設計光學模型。
    藉著這些光學模擬,我們可以得到一具有較高光萃取效率的發光二極體,並且可被適用製造。 我們也可以根據各種的照明應用來設計不同型式的發光二極體封裝。 這部論文中的所有光學模型及模擬都建立在一個線追跡的軟體TracePro。


    Light emitting diode (LED) has many advantages such as long lifetime, high efficiency and reliability, directional, insensitive to vibration and shocks, compact forms. In the recent years, high efficiency white LEDs have gained much interest because the replacement of fluorescent lamps will be realized in the near future. Nowadays the high internal quantum efficiency of LED has already been obtained because of the matured growth of epitaxy technology. However, the light extraction efficiency of LED is always less than 40%. In addition, when LEDs are applied to various applications especially in the field of solid-state lighting, the far-field radiation patterns of LEDs becomes a very important issue.
    In order to enhance the light extraction efficiency of a flip chip LED, we design the different rough surface structures between the sapphire layer and GaN layer. The roughed surface structure can reduce the total internal reflection (TIR) inside the LED and increase the probability of light escape from the chip. In order to predict the far-field radiation patterns of LEDs, we also design the optical model for practical packaged LED.
    After the optical simulations, we can get a higher light extraction efficiency LED chip. We also can design the various form of LED packages for any kind of lighting applications. All of the optical models and simulations in this thesis are built by ray-tracing software (TracePro)

    Content 中文摘要…………………………………………………………………I Abstract…………………………………………………………………II 誌謝…………………………………………………………………….III Content…………………………………………………………………IV Table captions………………………………………………………….VI Figure captions………………………………………………………..VII Chapter 1 Introduction………………………...……………………….1 1.1 Overview…………………………………………………………1 1.2 Motivation……………………………………………………….2 1.3 Thesis organization……………………………………………...4 Chapter 2 Basic theory …………………………………………………6 2.1 LED basics……………………………………………………….6 2.1.1 Basic electroluminescence theory………………………..6 2.1.2 Internal, extraction, and external efficiency…………….7 2.1.3 The Lamertian radiation pattern………………………...8 2.2 Geometry optical theory………………………………………12 2.2.1 Law of Reflection and Refraction………………………12 2.2.2 Fresnel Loss………………………………………………13 2.2.3 Total Internal Reflection (TIR)…………………………14 2.3 Absorption and extinction coefficient theory………………...16 2.4 Radiometry and photometry………………………………….19 2.5 Optical model in TracePro…………………………………….21 2.5.1 Bulk scattering…………………………………………...21 2.5.2 Bidirectional Scattering Distribution Function………..22 Chapter 3 Improvement of light extraction efficiency via surface roughing……….………………………………………….25 3.1 Physical model of the flip chip LED………………………….25 3.2 Different rough surface………………………………………..28 3.3 Result and discussion………………………………………….30 Chapter 4 Optical design and simulation of the LED lamp………..37 4.1 Physical model of the LED lamp……………………………..37 4.2 Building LED model…………………………………………..41 4.3 Result and discussion………………………………………….43 4.3.1 Model I…………………………………………………...43 4.3.2 Model II…………………………………………………..44 Chapter 5 Conclusion………………………………………………….48 Reference……………………………………………………………….49 Table Captions Table 1-1 The color of LEDs which are manufactured from different semiconductor material [1.1]………………………………2 Table 2-1 Photometric quantities [2.5]……………………………...20 Table 2-2 Photometric quantities [2.5]……………………………...20 Table 3-1 The thickness and optical properties of each layers……...27 Table 3-2 The mechanical dimensions of the flip chip LED………...27 Table 3-3 The simulation results of the rough surface with different separation between the center of each holes………………32 Table 3-4 The simulation results of the rough surface with different depth…………………………………………………………33 Table 3-5 The simulation results of the rough surface with different bottom width………………………………………………...34 Table 3-6 The simulation results of the rough surface with different opening width………………………………………………..35 Table 4-1 Comparison of simulation and experiment results on θ1/2…………………………………………………………….46 Figure Captions Fig. 1-1 The simulation flow chart in this thesis………………………3 Fig. 1-2 The organization flowchart of this thesis……………………..4 Fig. 2-1 LED p-n junction under (a) zero bias and (b) forward bias [2.1]……………………………………………………………..7 Fig. 2-2 Geometrical model used to derive the Lambertian radiation pattern. (a) A light ray emitted from the point-like source (b) The area element dA of the sphere [2.1]……………………...9 Fig. 2-3 LED with (a) planar, (b) hemispherical, and (c) parabolic surfaces. (d) Far-field radiation patterns of the different types of LED (a), (b), (c)[2.1]………………………………...11 Fig. 2-4 Relationship between a ray incident on a plane surface and the reflected and refracted rays…………….………………..13 Fig. 2-5 Total internal reflection (TIR) occurs when a ray, passing from a medium of higher to a lower refractive index………15 Fig. 2-6 The relative sensitivity of the eye to different wavelengths for normal levels of illumination (Daylight vision) and under conditions of dark adaptation (Night vision)……………….19 Fig. 3-1 Schematic structure of the flip chip model………………….26 Fig. 3-2 The flip chip model in the 3D structure and 2D structure (top view)…………………………………………………………...27 Fig. 3-3 The SEM image of the rough surface structure…………….28 Fig. 3-4 The rough surface structure in the 3D and 2D (top view)....29 Fig. 3-5 The dimensions of rough surface structure…………………29 Fig. 3-6 The variation of light extraction efficiency with the separation reducing…………………………………………..32 Fig. 3-7 The variation of light extraction efficiency with the depth reducing…………………………………………………….....33 Fig. 3-8 The variation of light extraction efficiency with the bottom width increasing…..………………………………………….34 Fig. 3-9 The variation of light extraction efficiency with the opening width increasing………………………………………………35 Fig. 4-1 The geometry of the LED of Luxeon emitters………………38 Fig. 4-2 The geometry of the P5 series InGaN LED chips……..……39 Fig. 4-3 The 3D structure of the Lambertian type LED……….…....40 Fig. 4-4 InGaN flip chip model I……………………………………...41 Fig. 4-5 InGaN flip chip model II……………………………………..42 Fig. 4-6 Radiation pattern (in polar coordinates) of simulation results of model I together with experiment results………………...43 Fig. 4-7 Radiation pattern (in rectangular coordinates) of simulation results of model I together with experiment results………..44 Fig. 4-8 Radiation pattern (in polar coordinates) of simulation results of model II together with experiment results……………….45 Fig. 4-9 Radiation pattern (in rectangular coordinates) of simulation results of model I together with experiment results………..46

    Reference
    Chapter 1
    [1.1] Mitsuo Fukuda, ‘’Optical Semiconductor Devices ’’, John Wiley & Sons , 1999
    [1.2] N. Holonyak Jr. and S. F. Bevaqua, ‘‘Coherent (visible) light emission from
    GaAs1-xPx junctions ’’, Appl. Phys. Lett., Vol. 1, 82-83, 1962.
    [1.3] Holcomb, M., P. Grillot, G. Hofler, M. Krames and S Stockman, Compound
    Semiconductor, Vol. 59, 2001.
    [1.4] Stephen Johnson, ‘‘LEDs—An Overview of the State of the Art in Technology
    and Application’’, Light Right 5 Conference, 27-31, 2002.
    [1.5] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. Ochiai Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, ‘‘Illumination with solid state lighting technology’’, J. Sel. Top. Quantum Electron, Vol. 8, 310-320, 2002
    [1.6] I. Schnitzer, E. Yablonovitch, C. Caneau, and T. J. Gmitter, ‘‘Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAsAlGaAs doule heterostructures’’, Appl. Phys. Lett, Vol. 62, 131-133, 1993.
    Chapter 2
    [2.1] E. Fred Schubert, ‘‘Light-Emitting Diodes’’, Cambridge University Press, 2003.
    [2.2] Eugene Hecht, ‘‘Optics’’, Addison-Wesley, New York, 1998, 3rd edition.
    [2.3] 許招墉, ‘‘物理光學’’, 俊傑書局股份有限公司, 2002.
    [2.4] Warren J. Smith, ‘‘Modern Optical Engineering’’, MGraw-Hill, 2000, 3rd edition.
    [2.5] Donald C. O’Shea, ‘‘Elements of Modern Optical Design’’, John Wiley & Sons, New York, 1985.
    [2.6] http://www.lambdares.com/,
    Chapter 3
    [3.1] K. Kurata, Y. Ono, K. Ito, M, Mori, and H, Sano, ‘‘An experimental study on improvement of performance for hemispherically shaped high-power IREDs with Ga1-XAlXAs grown junctions.’’, IEEE Trans. Electron Devices, Vol. 28, 347-379, 1981.
    [3.2] M. R. Krames, ‘‘High-power truncated-inverted-pyramid (AlXGa1-X)0.5In0.5P/GaP light-emiting diodes exhibiting >50% external quantum efficiency.’’, Appl. Phys. Lett., Vol. 75, 2365-2367, 1999.
    [3.3] R. Windisch, B. Dutta, M. Kuijk, A. Knobloch, S. Meinlschmidt, S. Schoberth, P. Kiesel, G. Borghs, G. H. Dohler, and P. Heremans, ‘‘40% efficient thin-film surface-textured light-emitting diodes by optimization of natural lithography.’’, IEEE Trans. Electron Devices, Vol. 47, 1492-1498, 2000.
    [3.4] T. Fulii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, ‘‘Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening.’’, Appl. Phys. Lett., Vol. 84, 855-857, 2004.
    [3.5] Chiao-Chih Yang, Ray-Hua Horng, Chia-En Lee, Wen-Yu Lin, Kuan-Fu Pan, Ying-Yong Su and Dong-Sing Wuu, ‘‘Improvement in Extraction Efficiency of GaN-Based Light-Emitting Diodes with Textured Surface Layer by Natural Lithography.’’, Jpn. J. Appl. Phys., Vol. 44, 2525-2527, 2005.
    Chapter 4
    [4.1] Song Jae Lee, ‘‘Analysis of light-emitting diodes by Monte Carlo photon simulation’’, Appl. Opt., Vol. 40, 1427-1437, 2001.
    [4.2] Fei Hu, Ke-Yuan Qian, Yi Luo, ‘‘Far-field pattern simulation of flip-chip bonded power light-emitting diodes by a Monte Carlo photon-tracing method’’, Appl. Opt., Vol. 44, 27682771, 2005.
    [4.3] http://www.lumileds.com/pdfs/DS25.pdf, ‘‘Lumileds Luxeon Emitter Technical
    Data’’ DS25
    [4.4] http://www.lumileds.com/pdfs/DS39.pdf, ‘‘Lumileds Luxeon Emitter Technical
    Data’’ DS39

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE