簡易檢索 / 詳目顯示

研究生: 楊奇達
Chyi-Da Yang
論文名稱: 光纖通訊用高速高效率砷化銦鎵P-I-N檢光器
High Bandwidth with High Efficiency InGaAs P-I-N Photodiodesfor Optical Fiber Communications
指導教授: 吳孟奇
Meng-Chyi Wu
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 109
中文關鍵詞: 邊縁耦合式感測器自行終止氧化物延磨自行對準氏擴散晶相蝕刻光漏斗波導
外文關鍵詞: EC-PD, STOP, SAD, crystallographic etching, light funnel, waveguide
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在高速、高密度的光纖通訊系統中,單石化砷化銦鎵檢光器陣列,相較於複合式陣列,提供更一致、更可靠的檢光器特性以及較低廉的生產成本。而其中邊緣入射型檢光器,在與邊緣發射型雷射或波導整合時,比起傳統面入射型檢光器,可採用更簡易的整合方式,因而得以進一步降低整體成本。然除受磊晶品質、元件製程影響外,邊緣入射型檢光器的光入射面尚易受元件後續處理所影響,諸如劈裂、鍍抗反射層,以至於儲放環境等。是以此類陣列的實現,隨著陣列中的檢光器數目增加而大幅趨於困難。截至目前,相關文獻以至於技術上的資訊因而十分稀少。
    本研究將計畫以有機金屬氣相沈積技術成長高品質磊晶結構,並已現有檢光器前續製程,搭配將研發之光耦合面處理製程,以砷化銦鎵邊緣耦合型p-i-n檢光器陣列為研製目標。


    As wide-bandwidth, high-capacity communications via optical fiber is demanded, high-speed optoelectronic devices for message transmission and reception play major roles in promoting overall system performances. In this dissertation, InGaAs edge-coupled photodiodes (EC-PDs) with a light funnel integrated (LIFI) in front of the coupling aperture, called LIFI EC-PD, have successfully fabricated based on the self-terminated oxide polish (STOP), the crystallographic slope etching of InP, and the self-aligned diffusion (SAD) techniques. The LIFI EC-PD presents not only a lower dark current density (~4.4 mA/cm2) but also a higher responsivity (~0.4 A/W) than that of the mesa EC-PD (27 mA/cm2 and 0.26 A/W, respectively). Furthermore, the thick oxide film serves as the funnel in front of active-region aperture to enhance the coupling efficiency and to lower the bonding pad capacitance down to 50 fF. The lowered bonding pad capacitance can be beneficial in designing a device with a higher transit-time-limited frequency response of beyond 30 GHz. The LIFI EC-PD with a 1-µm thick absorption layer exhibits a 3-dB bandwidth of 20 GHz and a responsivity of ~0.4 A/W. A further improved novel high-speed waveguide photodetectors (WGPDs) integrated with a light input tapered-SiOx facet exhibiting extremely low dark current density and high responsivity characteristics of 0.74 A/W from 0.39 A/W of the device without light input tapered-SiOx facet has successfully been developed. The novel WGPDs can have an enlarged coupling aperture with responsivities and reduced dissipative absorption, which result from the reflection of an InP-slope and a p-metal, and thus permit more light to enter its absorption layer. Accordingly, such ground-breaking WGPD, exhibiting a 3-dB bandwidth of 20 GHz with a coupling efficiency of 0.74 A/W at a wavelength of 1.3-μm under 132.5 μW illuminations, can explore a better manufacturing competence.

    CONTENTS ABSTRACT …………………………………………………………………………Ⅰ Contents…………………………………………………………………………Ⅱ FIGURE CAPTIONS…………………………………………………………Ⅴ TABLE CAPTIONS………………………………………………………………Ⅶ LIST OF SYMBOLS………………………………………………………………Ⅷ CHAPTER 1 INTRODUCTION TO InGaAs P-I-N PHOTODIODES and APPLICATION……1 CHAPTER 2 THEORETICAL ANALYSES OF InP/InGaAs/InP DOUBLE-HETEROJUNCTION P-I-N PHOTODIODE………………………………………………………………8 2-1 Dark Current………………………………………………………………8 2-1-1 Main Determination Among These Components……………9 2-1-2 Surface Recombination Current Caused Through Density of State…………………………………………………………………11 2-1-3 Density of States Contribute to Drift Current…………………15 2-2 Quantum Efficiency……………………………………………………19 2-3 Dynamic Response……………………………………………………21 CHAPTER 3 EDGE (I-SIDE ILLUMINATED)-COUPLED GaInAsP/InGaAs/InP DOUBLE-HETEROJUNCTION P-I-N PHOTODIODE WITH LIGHT INPUT TAPERED-SiOx FACET OF InP CRYSTALLOGRAPHIC SLOPE BASED ON N+ InP SUBSTRATE…………………..……………………………………………27 3-1. The Effectiveness of the Light Funnel Waveguide………………28 3-1-1 Device fabrication………………………………………………29 3-1-2 DC characterizations…………………………………………32 3-1-3 Dynamic response calculation………………………………38 3-1-4 Effectiveness of slope in front of photodiode……………39 3-2. Improved Fabrication---Novel Waveguide Photodetector (WGPD) ………………………………………………………………39 3-2-1 Device fabrication………………………………………………42 3-2-2 DC characterizations…………………………………………45 3-2-3 Dynamic response calculation………………………………53 3-2-4 Effectiveness of Improved Fabrication……………………54 CHAPTER 4 FUTURE WORKS……………………………………………………….56 4-1. FUTURE WORK OF EDGE-COUPLED P-I-N PHOTODIODE………56 4-2. Miniature of surface (P-side illuminated)- coupled resonant-cavity -enhanced (RCE) InP/InGaAs/InP Heterojunctions photodiodes..………………59 4-2-1. Distributed Bragg Reflector (DBR) simulation and epitaxy…59 4-2-1-1 Simulation of Distributed Bragg Reflector (DBR)………59 4-2-1-2 Distributed Bragg Reflector (DBR) epitaxy……………61 4-2-1-3 The epitaxy of InGaAs p-i-n photodetector……………62 4-2-2. Lift off fabrication and RCE photodiode process……………62 4-2-2-1 InGaAs p-i-n photodetector lift off on DBR GaAs substrate…………………………………………………………62 4-2-2-2 Process of RCE p-i-n photodetector……………………63 4-2-3. Discussion of a DBR epitaxial wafer comparing the analytic information simulated from the transmission matrix method………………………………………………..………………64 4-2-3-1 Distributed Bragg Reflector (DBR) ………………………64 4-2-3-2 Epitaxial Lift Off (ELO) ………………………………………65 4-2-3-3 Electrical analysis of the ELO photodetector…………65 REFERENCES………………………………………………………………………67 PUBLICATION LIST……………………………………………………………..,110

    [1] J. E. Bowers, and C. A. Burrus, “Ultrawideband long-wavelength p-i-n photodetectors,” J. Lightwave Technol., vol. LT-5, pp. 1339-1350,1987.
    [2] S. R. Forrest, “In0.53Gs0.47As photodiodes with dark current limited by generation-recombination and tunneling,” Appl. Phys. Lett., vol. 37, pp. 322-325, Aug. 1980.
    [3] G. A. Porkolab, Y. J. Chen, S. A. Merritt, Seyed Ahmad Tabatabaei, Sambhu Agarwala, F. G. Johnson, Oliver King, M. Dagenais, R. A. Wilson, and D. R. Stone, “Wet-chemistry surface treatment for dark-current reduction that preserves lateral dimensions of reactive ion etched Gs0.47In0.53As p-i-n diode photodetectors,” IEEE Photon. Technol. Lett., vol. 9, No. 4, Apr. pp.490-492,
    [4] R.-T. Huang and D. Renner, “Improvement in dark current characteristic and long-term stability of mesa InGaAs/InP p-i-n photodiodes with two-step SiNx surface passivation,” IEEE Photon. Technol. Lett., vol. 3, pp. 934-936, 1991.
    [5] D.-S. Kim, C.-P. Chao, K. Beyzavi, P. E. Burrows, and S. R. Forrest, “Surface passivation of InP/ In0.53Gs0.47As heterojunction bipolar transistors for opto-electronic integration,” J. Electron. Mater., vol. 25, pp. 537-540, 1996.
    [6] T. Takeuchi, K. Makita, and K. Taguchi, “A planar slab-waveguide photodiode with a pseudowindow region in front of the waveguide,” IEEE Photon. Technol. Lett., vol. 10, pp. 255-257, 1998.
    [7] C. L. Ho, M. C. Wu, W. J. Ho, J. W. Liaw, and H. H. Wang, “Effectiveness of the pseudowindow for edge-coupled InP-InGaAs-InP PIN photodiodes,” IEEE J. Quantum Electron., vol. 36, no. 3, pp. 333-339, 2000.
    [8] Vincent Magnin, Louis Giraudet, Joseph Harari, J. Decobert, P. Pagnot, E. Noucherez, and Didier Decoster, ”Design, optimization, and fabrication of side-illuminated p-i-n photodetectors with high responsivity and high alignment tolerance for 1.3- and 1.55-μm wavelength use,” J. Lightwave Technol., vol. 209, pp. 477-4880, 2002.
    [9] Robert B. Taylor, Paul E. Burrows, and Stephen R. Forrest, “An integrated, crystalline organic waveguide-coupled InGaAs photodetector,” IEEE Photon. Technol. Lett., vol. 9, pp. 365-367, 1997.
    [10] R. J. Deri, W. Doldissen, R. J. Hawkins, R. Bhat, J. B. D. Soole, L. M. Schiavone, M. Seto, N. Andreakis, Y. Silverberg, and M. A. Koza, “Efficient vertical coupling of photodiodes to InGaAs rib waveguide,” Appl. Phys. Lett., vol. 58, pp. 2749-2751, 1991.
    [11] K. Kato, S. Hata, A. Kozen, S. Oko, S. Matsumoto, and J. Yoshida, “22 GHz photodiode monolithically integrated with optical waveguide on semi-insulating InP using novel butt-joint structure,“ Electron. Lett., vol. 28, pp. 1140-1142, 1992.
    [12] F. Hieronymi, E. H. Bottcher, E. Droge, D. Kuhl, St. Kollakowski and D. Bimberg, ”Large-area low-capacitance InP/InGaAs MSM photodetectors for high-speed operation under front and rear illumination,” Electron. Lett., vol.30, pp.1247-1248, 1994
    [13] J. E. Bowers, E. L. Hu, Tan I-Hsing, B. I. Miller, ”Modeling and performance of wafer-fused resonant-cavity enhanced photodetectors,” IEEE J. Quantum Electron., vol. 27, pp. 1863-1875, Oct. 1995.
    [14] H. Bourdoucen, and J. A. Jervase, ”Design of ultra-fast dual-wavelength resonant-cavity-enhanced Schottky photodetectors,” IEEE J. Quantum Electron., vol. 37, pp. 63-68, Issue 1 , Jan. 2001.
    [15] C. C. Barron, C. J. Mahon, B. J. Thibeault, G. Wang, W. Jiang, L. A. Coldren, and J. E. Bowers, ”Resonant-cavity-enhanced pin photodetector with 17 GHz bandwidth-efficiency product,” Electron. Lett., vol. 30, pp. 1796-1797, 1994.
    [16] A. Dodabalaput and T. Y. Chang, “Resonant-cavity InGaAlAs/InGaAs/InAlAs phototransistors with high gain for 1.3-1.6μm,” Appl. Phys. Lett., vol. 60, pp. 929-931, 1992.
    [17] A. G. Dentai, R. Kuchibhotla, J. C. Campbell, C. Tsai, and C. Lei, “High quantum efficiency, long wavelength InP/InGaAs microcavity photodiode,” Electron. Lett., vol. 27, pp. 2125-2127, 1991.
    [18] M. J. Mondry, D. I. Babic, J. E. Bowers, and L. A. Coldren, “Refractive indexes of (AlGaIn)As epilayers on InP for optoelectronic applications,” IEEE Photon. Technol. Lett., vol. 4, pp. 627-630, 1992
    [19] S. Adachi, “GaAs, AlAs, and AlxGa1-xAs: Material parameters for use in research and device applications,” J. Appl. Phys., vol. 58 , pp. R1-29, 1985.
    [20] W. K. Chan and E. Yablonovitch,” Van der Waals bonded III-V films for optoelectronic,“ Proc. 1st Int. Symp. on Semiconductor Wafer Bonding : Science, Technology and Applications, Pennington, NJ, USA, pp.123-131, 1992
    [21] H. Schumacher, T. J. Gmitter, H. P. LeBlanc, R. Bhat, E. Yablonovitch, and M. A. Koza,” High-speed InP/GaInAs photodiode on sapphire substrate,” Electron. Lett., vol. 22, pp. 1653-1654, 1989
    [22] C. Caneau, W. K. Chan, F. De Rosa, T. J. Gmitter, B. P. Hong, J. I. Song, P. F. Micelli, and D. M. Shah, “Epitaxial lift-off GaAs HEMT's,” IEEE Trans. Electron Devices, vol. 42, pp. 1877-1881, Nov. 1995.
    [23] R. Bhat, G. L. Christenson, M. Hong, Y. H. Lo, J. P. Mannaerts, A. T. T. D. Tran, and Z. H. Zhu, “Long-wavelength resonant vertical-cavity LED/photodetector with a 75-nm tuning range,” IEEE Photon. Technol. Lett., vol. 9, pp. 725 -727, 1997.
    [24] K. Shimomura, and T. Yamagata, “High responsivity in integrated optically controlled metal-oxide semiconductor field-effect transistor using directly bonded SiO2 –InP,” IEEE Photon. Technol. Lett., vol. 9, pp. 1143 -1145,1997.
    [25] Bell Lab. T. P. Lee, C. A. Burrus, A. G. Dentai, and K. Ogawa, “Small area InGaAs/InP p-i-n photodiodes: fabrication, characteristics and performance of devices in 274Mb/s and 45Mb/s lightwave receivers at 1.31 μm wavelength”, Electron. Lett., vol. 16, pp. 155-156, 1980.
    [26] NTT N. Susa, Y. Yamauchi, and H. Kanbe, “Punch-through type InGaAs photodetector fabricated by vapor-phase epitaxy”, IEEE J. Quantum Electron., vol. 16, pp. 542-545, 1980.
    [27] Bell Lab. T. P. Lee, C. A. Burrus, and A. G. Dentai, “InGaAs/InP p-i-n photodiodes for lightwave communications at the 0.95-1.65 μm wavelength”, IEEE J. Quantum Electron., vol. 17, pp. 232-238, 1981.
    [28] Y. Le Bellego, J. P. Praseuth, F. Lugiez, L. Giraudet, and A. Scavennec, “High-responsivity GaInAs PIN photodiode with AlGaInAs window”, Inst. Phys. Conf. Ser., No. 112, pp. 603-606, 1990.
    [29] CTSD, Rockwell International, & AT&T Bell Lab. O. K. Kim, B. V. Dutt, R. J. McCoy, and J. R. Zuber, “A low dark-current, planar InGaAs p-i-n photodiode with a quaternary InGaAsP cap layer”, IEEE J. Quantum Electron., vol. 21, pp. 138-143, 1985.
    [30] RCA G. H. Olsen, “Low leakage, high-efficiency, reliable VPE InGaAs 1.0-1.7μm photodiodes”, IEEE Electron Device Lett., vol. 2, pp. 217-219, 1981.
    [31] Matsushita K. Ohnaka, M. Kubo, and J. Shibata, “A low dark current InGaAs/InP p-i-n photodiode with covered mesa structure”, IEEE Trans. Electron Devices, vol. 34, pp. 199-204, 1987.
    [32] Mitsubishi K. Takahashi, T. Murotani, M. Ishii, W. Susaki, and S. Takamiya, “A monolithic 1×10 array of InGaAsP/InP photodiodes with small dark current and uniform responsivities”, IEEE J. Quantum Electron., vol. 17, pp. 239-242, 1981.
    [33] Conductus & UCSB Y. M. Zhang, V. Borzenets, N. Dubash, T. Reynolds, Y. G. Wey, and J. E. Bowers, “Cryogenic performance of a high-speed GaInAs/InP p-i-n photodiode”, J. Lightwave Technol., vol. 15, pp. 529-533, 1997.
    [34] Y. Takanashi, M. Kawashima, and Y. Horikoshi, “Required donor concentration of epitaxial layers for efficient InGaAsP avalanche photodiodes,” Jpn. J. Appl. Phys., 19, pp.693-701, 1980.
    [35] S.M Sze, ”Physics of semiconductor devices: physics and technology,” Wiley, 1985.
    [36] S.R.Forrest, R.F.Leheny, R.E.Nahory, and M.A.Pollack, ”In0.53Ga0.47As photodiodes with dark current limited by generation-recombination and tunneling,” Appl.Phys.Lett,vol.37,322,1980.
    [37] C. H. Henry, R. A. Logan, and F. R. Merritt, “The effect of surface recombination on current in AlxGa1-xAs heterojunctions,” J. Appl. Phys., vol.49, pp. 3530-3542, 1978.
    [38] M. Fukuda, “Current drift associated with surface recombination current in InGaAsP/InP optical devices,” J. Appl. Phys., vol. 59, pp. 4172-4176, 1986.
    [39] HENRY, C.H., LOGAN, R.A., and MERRITT, F.R., “Measurement of gain and absorption spectra in A1GaAs buried heterostructure lasers” , J Appl. Phys., 1980,51,pp. 3042-3050
    [40] DERJ, R.J., KAPON. E., and SCHIAVONE, L.M.: “Scattering in low-loss GaAs/A1GaAs rib waveguides”, Apple. Phys Lett., 1987.51,pp. 789-791
    [41] CASEY Jr., H.C., and PANISH, M.B., “Heterostructure lasers, Pt. A.“ (Academic Press, 1978,p. 52)
    [42] ALPING, A., TELL, R., and ENG, S.T., ”Photodetection properties of semiconductor laser diode detectors”, J. Lightwave Technol., 1986, LT-4, pp. 1662-1668.
    [43] SARUWATARI, M., and NAWATA, K., “ Semiconductor laser to single-mode fibre coupler”, Appl. Opt., 1979, 18, pp. 1847-1856.
    [44] KAWANO, L., SARUWATARI, M., and MITOMI, O., ”A new confocal combination lens method for a laser-diode module using a single-mode fiber”, J. Lightwave T echnol., 1985, LT-3, pp. 739-745
    [45] GHAFOORI-SHIRAZ, H., and ASANO, T., “Microlens for coupling a semiconductor laser to a single-mode fibre“, Optics Lett., 1986, 11, pp. 537-539.
    [46] LARSSON, A., ANDRELSON, P.A., ENG, S.T., and YARIV, A., “Tunable superlattice pin photodetectors: characteristics, theory, and applications” ,IEEE J . Quantum Electron., 1988, 24, pp. 787-801.
    [47] LUCOVSKY, G., SCHWARZ, R.F., and EMMONS, R.B., “Transit-time considerations in pin diodes”, J. Appl. Phys., 1964,35, pp.622-628.
    [48] WANG, S.Y., and BLOOM, D.M., “100 GHz bandwidth planar GaAs Schottky photodiode”, ibid., 1983, 19, pp.554-555.
    [49] SZE, S.M., “Pyhsics of semiconductor devices “, Wiley, 1981
    [50] LUCOVSKY, G., SCHWARZ, R.F., and EMMONS, R.B., “Transit-time considerations in pin diodes”, J. Appl. Phys., 1964,35, pp.622-628.
    [51] WINDHORN, T.H., COOK, L.W., and STILLMAN, G.E., “The electron velocity-field characteristics for n-In0.53Ga 0.47 As at 300 K”, Electron Device Lett., 1982, EDL-3, pp. 18-20.
    [52] WINDHORN, T.H., COOK, L.W., and STILLMAN, G.E., “High-field electron transport in InX Ga 1-X As y P 1-y ( g=1.2 m)”, Appl. Phys. Lett., 1982,41,pp. 1065-1067.
    [53] BOWERS, J.E., and BURRUS, C.A., “Ultrawide-band long-wavelength pin photodetectors”, J. Lighwave Technol., 1987, LT-5, pp. 1339-1350.
    [54] FORREST, S.R., KIM, O.K., and SMITH, R.G., ”Optical reponse time of In0.53Ga 0.47 As/InP avalanche photodiodes”, Appl. Phys. Lett., 1982, 41,pp. 95-98.
    [55] HOLDEN, W.S., CAMPBELL, J.C., FERGUSON, J.F., DENTAI, A.G., and JHEE, Y.K., “Improved frequency response of InP/InGaAsP/InGaAs avalanche photodiodes with separate absorption, grading, and multiplication region”, Electron. Lett., 1985, 21, pp.886-887.
    [56] T. Takeuchi, K. Makita, and K. Taguchi, “A planar slab-waveguide photodiode with a pseudowindow region in front of the waveguide,” IEEE Photon. Technol. Lett., vol. 10, pp. 255-257, 1998.
    [57] C. L. Ho, M. C. Wu, W. J. Ho, J. W. Liaw, and H. H. Wang, “Effectiveness of the pseudowindow for edge-coupled InP-InGaAs-InP PIN photodiodes,” IEEE J. Quantum Electron., vol. 36, no. 3, pp. 333-339, 2000.
    [58] C. L. Ho, W. J. Ho, and M. C. Wu, “Edge-coupled InGaAs P-I-N photodiode with the pseudowindow defined by etching process,” IEEE J. Quantum Electron., vol. 37, no. 11, pp. 1409-1411, 2001.
    [59] T. Bottner, H. Krautle, E. Kuphal, K. Miethe and H. L. Hartnagel, “Surface- and sidewall-damage of InP-based optoelectronic devices during reactive etching using CH4/H2” pp. 115-118
    [60] C. L. Ho, C. J. Lin, W. J. Ho, and J. W. Liaw, ”Self-aligned fabrication method for ridge-waveguide semiconductor laser” U. S. Patent, US 6,503,770 B1, 2003.
    [61] C. H. Henry, R. A. Logan, and F. R. Merritt, “The effect of surface recombination on current in AlxGa1-xAs heterojunctions,” J. Appl. Phys., vol.49, pp. 3530-3542, 1978.
    [62] M. Fukuda, “Current drift associated with surface recombination current in InGaAsP/InP optical devices,” J. Appl. Phys., vol. 59, pp. 4172-4176, 1986.
    [63] G. Lucovsky, R. F. Schwarz, and R. B. Emmios, “Transit-time considerations in p-i-n diode,” J. Appl. Phys., vol. 35, pp. 622-628, 1964.
    [64] P. Hill, J. Schlafer, W. Powazinik, M. Urban, E. Eichen, and R. Olshansky, “Measurement of hole velocity in n-type InGaAs,” Appl. Phys. Lett., vol. 50, pp. 1260-1262, 1987.
    [65] T. H. Windhorn, L. W. Cook, and G. E. Stillman, “The electron velocity-field characteristic for n-In0.53Ga0.47As at 300K,” IEEE Electron Device Lett., vol. 3, pp. 18-20, 1982.
    [66] J. Harari, D. Decoster, J. P. Vilcot, B. Kramer, C. Oguey, P. Salzac, and G. Ripoche, “Numerical simulation of avalanche photodiodes with guard ring,” IEE Proc. vol. 138, pt. J, no. 3, pp. 211-217, 1991.
    [67] J. Harari, G. H. Jin, F. Journet, J. Vandecasteele, J. P. Vilcot, C. Dalle, M. R. Friscourt, and D. Decoster, “Modeling of microwave top illuminated PIN photedetector under very high optical power,” IEEE Trans. Microwave Theory and Tech., vol. 44, pp. 1484-1487, 1996.
    [68] A. Alping, “Waveguide pin photodetectors: Theoretical analysis and design criteria,” IEE Proc. vol. 136, pt. J, pp. 177-182, 1989.
    [69] M. Born and E. Wolf, “Principles of Optics,” 3rd ed Oxford : Pergamon,1965
    [70] P. Yeh, Optical Waves in Layered Media. New York: Wiley, 1988.
    [71] T. Mukaihara, N. Yamanaka, N. Iwai, T. Ishikawa and A. Kasukawa, ”1.3μm GaInAsP lasers integrated with butt-coupled waveguide and high reflective semiconductor/air Bragg reflector (SABAR)” Electron. Lett., vol. 34, pp.882-884, 1998
    [72] S. S. Murtaza, K. A. Anselm, A. Srinvasan, B. G. Streetman, and J. C. Campbell, ”High-Reflectivity Bragg Mirror for Optoelectronic Applications,” IEEE J. Quantum Electron., 1995, 31, pp1819-1825
    [73] ]F. Hieronymi, E. H. Bottcher, E. Droge, D. Kuhl, St. Kollakowski and D. Bimberg, ”Large-area low-capacitance InP/InGaAs MSM photodetectors for high-speed operation under front and rear illumination,” Electron. Lett., vol.30, pp.1247-1248, 1994

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE