研究生: |
蔡承恩 Tsai, Cheng En |
---|---|
論文名稱: |
低溫大面積成長氧化亞銅與銀奈米粒子共修飾氧化鋅奈米線於光觸媒應用 Low temperature growth of large area zinc oxide nanowires co-modified with cuprous oxide and silver nanoparticles for photocatalytic application |
指導教授: |
林鶴南
Lin, Heh Nan |
口試委員: |
林樹均
Lin, Su Jien 李紫原 Lee, Chi Young |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 57 |
中文關鍵詞: | 氧化鋅 、光觸媒 、銀奈米粒子 、氧化亞銅奈米粒子 、大面積 、紙基板 |
外文關鍵詞: | zinc oxide, photocatalyst, silver nanoparticle, cuprous oxide nanoparticle, large area, paper substrate |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗將氧化亞銅及銀奈米粒子修飾於氧化鋅奈米線,先利用水溶液法將氧化鋅奈米線長在牛皮紙基板上,並輔以光還原法將氧化亞銅及銀奈米粒子分別或共同修飾於氧化鋅奈米線上,採用全低溫製程,從基板到光觸媒材料的選擇皆為便宜且方便、對環境低汙染,因此對於將來實際應用能有極大的發展潛力。
經由掃描式電子顯微鏡的表面形貌觀察,可確認修飾前後奈米線及奈米顆粒的結構;藉由能量色散X-射線光譜分析得到材料內部並無其他雜質元素的存在;螢光光譜圖的分析可以看到修飾後的奈米線在紫外光放光波段強度均下降,其中以共修飾的奈米線的放光強度最低,推斷其抑制電子電洞對的再結合能力最好。
光觸媒分解實驗在功率300 W的鹵素燈下進行,將10×10 cm2的紙試片放入100毫升、濃度為10 µM的羅丹明B (rhodamine B) 水溶液,量測吸收光譜隨時間的變化,並經由數據分析得到其一階反應速率,以共修飾的氧化鋅奈米線的反應速率最高,為0.022 min-1,是未修飾氧化鋅奈米線的1.69倍。綜合以上分析我們發現,以氧化亞銅及銀奈米粒子共修飾之氧化鋅奈米線,具有最佳的抑止電子電洞對再結合的效果,且在分解汙染物的實驗中亦有最好的分解效率,因此我們可以成功利用簡單的光還原法製備出效率較好的光觸媒複合材料。
In this work, we reported on the enhanced photocatalytic activity of ZnO nanowires (NWs) modified with cuprous oxide and silver nanoparticles (NPs). ZnO NWs were grown by the solution method and then modified with cuprous oxide NPs, silver NPs, or both (co-modified) by the photoreduction method on paper substrates. We chose low cost, convenient and eco-friendly materials and all the steps were done by low temperature. Therefore, it showed great potential to apply on our daily life.
From scanning electron microscopy images, we could confirm the morphologies and compare as-grown NWs with modified ones. The EDS spectra revealed there were no other elements in the materials. In the photoluminescence spectra, the ultraviolet emission of co-modified NWs showed the lowest. Therefore, we could deduce co-modified NWs had the best ability to reduce the combination of electron-hole pairs.
The photocatalytic activities of the NWs were conducted by putting 10×10 cm2 paper samples into rhodamine B solution (100 mL, 10 µM) and evaluated the absorption spectrum under the illumination of a 300 W halogen lamp. After data analysis, we could get the first order kinetic constants of all the samples. Among them, the co-modified NWs showed the best efficiency with the highest kinetic constant of 0.022 min-1, which was 1.69 times as high as that of as-grown ZnO NWs. From the analysis, the co-modified NWs had the best ability to reduce the combination of electron-hole pairs and performed the highest degrading rate. To summarize, we were able to fabricate the composite photocatalytic materials with better efficiency by simple photoreduction processes.
1. Fujishima, A.; Honda, K. Nature 1972, 238, 37.
2. Senthilnathan, J.; Philip, L. Chem Eng J 2010, 161, 83.
3. Fan, S. W.; Srivastava, A. K.; Dravid, V. P. Appl Phys Lett 2009, 95, 142106.
4. Baruah, S.; Jaisai, M.; Imani, R.; Nazhad, M. M.; Dutta, J. Sci Technol Adv Mater 2010, 11, 5.
5. Sayilkan, F.; Asilturk, M.; Kiraz, N.; Burunkaya, E.; Arpac, E.; Sayilkan, H. J Hazard Mater 2009, 162, 1309.
6. Chen, H. H.; Nanayakkara, C. E.; Grassian, V. H. Chem Rev 2012, 112, 5919.
7. Bonsen, E.M.; Schroeter, S.; Jacobs, H.; Broekaert, J. A. C. Chemosphere 1997, 35, 1431.
8. Chang, J. H.; Lin, H. N. Mater Lett 2014, 132, 134.
9. Chang, Y. H.; Chiang, M. Y.; Chang, J. H.; Lin, H. N. Mater Lett 2015, 138, 85.
10. Chiang, M. Y.; Lin, H. N. Mater Lett 2015, 160, 440.
11. Han, Z.; Ren, L.; Cui, Z.; Chen, C.; Pan, H.; Chen, J. Appl Catal B Environ 2012, 126, 298.
12. Sahu, D. R.; Liu, C. P.; Wang, R. C.; Kuo, C. L.; Huang, J. L. Int J Appl Ceram Tec 2013, 10, 814.
13. Wang, Z. L. J Phys Condens Mat 2004, 16, R829.
14. Zhao, M. H.; Wang, Z. L.; Mao, S. X. Nano Lett 2004, 4, 587.
15. Jiang, C. Y.; Sun, X. W.; Tan, K. W.; Lo, G. Q.; Kyaw, A. K. K.; Kwong, D. L. Appl Phys Lett 2008, 92, 143101.
16. Bai, S.; Wu, W. W.; Qin, Y.; Cui, N. Y.; Bayerl, D. J.; Wang, X. D. Adv Funct Mater 2011, 21, 4464.
17. Wagner, R. S.; Ellis, W. C. Appl Phys Lett 1964, 4, 89.
18. Ho, S. T.; Chen, K. C.; Chen, H. A.; Lin, H. Y.; Cheng, C. Y.; Lin, H. N. Chem Mater 2007, 19, 4083.
19. Ho, S. T.; Wang, C. Y.; Liu, H. L.; Lin, H. N. Chem Phys Lett 2008, 463, 141.
20. Chang, P.; Fan, Z.; Tseng, W.; Wang, D.; Chiou, W.; Hong, J.; Lu, J. G. Chem Mater 2004, 16, 5133.
21. Wang, J.; Gao, L. Solid State Commun 2004, 132, 269.
22. Lu, C. H.; Qi, L. M.; Yang, J. H.; Tang, L.; Zhang, D. Y.; Ma, J. M. Chem Commun 2006, 3551.
23. Ahn, S. E.; Ji, H. J.; Kim, K. H.; Kim, G. T.; Bae, C. H.; Park, S. M.; Kim, Y. K.; Ha, J. S. Appl Phys Lett 2007, 90, 153106.
24. Tak, Y. J.; Yong, K. J. J Phys Chem B 2005, 109, 19263.
25. Tang, J.; Chai, J. W.; Huang, J.; Deng, L. Y.; Nguyen, X. S.; Sun, L. F.; Venkatesan, T.; Shen, Z. X.; Tay, C. B.; Chua, S. J. Appl Mater Interfaces 2015, 7, 4937.
26. Ramgir, N. S.; Kaur, M.; Sharma, P. K.; Datta, N.; Kailasaganapathi, S.; Bhattacharya, S.; Debnath, A. K.; Aswal, D. K., Gupta, S. K. Sens Actuators B Chem 2013, 187, 313.
27. Schmidt-Mende, L.; MacManus-Driscoll, J. L. Mater Today 2007, 10, 40.
28. Park, W. I.; Jun, Y. H.; Jung, S. W.; Yi, G. C. Appl Phys Lett 2003, 82, 964.
29. Ahn, C. H.; Kim, Y. Y.; Kim, D. C.; Mohanta, S. K.; Cho, H. K. J Appl Phys 2009, 105, 013502.
30. Kudo, A. Catal Surv Asia 2003, 7, 1.
31. Linsebigler, A. L.; Lu, G. Q.; Yates, J. T. Chem Rev 1995, 95, 735.
32. Hoffmann, M. R.; Choi, S. T. M. W.; Bahnemannt, D.W. Chem Rev 1995, 95, 69.
33. Kudo, A.; Miseki, Y. Chem Soc Rev 2009, 38, 253.
34. Behnajady, M. A.; Modirshahla, N.; Hamzavi, R. J Hazard Mater 2006, 133, 226.
35. Wood, P. M. Biochem J 1988, 253, 287.
36. Monteagudo, J. M.; Duran, A.; Gonzales, R.; Exposito, A. J. Appl Catal B Environ 2015, 176, 120.
37. Zayat, M.; Garcia Parejo, P.; Levy, D. Chem Soc Rev 2007, 36, 1270.
38. Jung, S.; Yong, K. Chem Commun 2011, 47, 2643.
39. Chen, W.; Zhang, N.; Zhang, M. Y.; Zhang, X. T.; Gao, H.; Wen, J. Cryst Eng Comm 2014, 16, 1201.
40. Zou, C. W.; Rao, Y. F.; Alyamani, A.; Chu, W.; Chen, M. J.; Patterson, D. A.; Emanuelsson, E. A.; Gao, W. Langmuir 2010, 26, 11615.
41. Han, Z.; Wei, L.; Zhang, Z.; Zhang, X.; Pan, H.; Chen, J. Plasmonics 2013, 8, 1193.
42. Chen, D.; Chen, Q.; Ge, L.; Yin, L.; Fan, B.; Wang, H.; Lu, H.; Xu, H.; Zhang, R.; Shao, G. Appl Surf Sci 2013, 284, 80.
43. Abdu, Y.; Musa, A. O.; Bayero, J. Pure Appl Sci 2009, 2, 8.
44. 江茂源. 國立清華大學碩士學位論文 2015
45. 邱國斌; 蔡定平. 物理雙月刊 2006, 28, 472.
46. Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Nature 2003, 424, 824.
47. 王俐雲. 國立清華大學碩士學位論文 2014
48. Hutter, E.; Fendler, J. Adv Mater 2004, 16,1685.
49. Linic, S.; Christopher, P.; Ingram, D. B. Nat Mater 2011, 10, 911.
50. Awazu, K.; Fujimaki, M.; Rockstuhl, C.; Tominaga, J.; Murakami, H.; Ohki, Y.; Yoshida, N.; Watanabe, T. J Am Chem Soc 2008, 130, 1676.
51. Tahir, K.; Ahmad, A.; Li, B.; Nazir, S.; Khan, A. U.; Nasir, T.; Khan, Z. U. H.; Naz, R.; Raza, M. J Photochem Photobiol B 2016, 162, 189.
52. Mukherjee, S.; Libisch, F.; Large, N.; Neumann, O.; Brown, L. V.; Cheng, J.; Lassiter, J. B.; Carter, E. A.; Nordlander, P.; Halas, N. J. Nano Lett 2013, 13, 240.
53. Cushing, S. K.; Li, J.; Meng, F.; Senty, T. R.; Suri, S.; Zhi, M.; Li, M.; Bristow, A. D.; Wu, N. J Am Chem Soc 2012, 134, 15033.
54. Sun, S.; Wang, W.; Zhang, L.; Shang, M.; Wang, L. Catal Commun 2009, 11, 290.
55. Zhou, F. L.; Li, X. J.; Shu, J.; Wang, J. J Photochem Photobiol A 2011, 219, 132.
56. Lee, M. Y.; Yong, K. J. Nanotechnology 2012, 23, 194014.
57. Chang, J. H.; Lin, H. N. J Nanomater 2014, 2014, 426457.
58. Zheng, Y. H.; Zheng, L. R.; Zhan, Y. Y.; Lin, X. Y.; Zheng, Q.; Wei, K. M. Inorg Chem 2007, 46, 6980.