簡易檢索 / 詳目顯示

研究生: 楊肅同
Yang, Su-Tong
論文名稱: 正子斷層掃瞄影像部份容積效應之校正
Partial Volume Correction in Positron Emission Tomography
指導教授: 許靖涵
Hsu, Ching-Han
蕭穎聰
Hsiao, Ing-Tsung
口試委員: 許靖涵
蕭穎聰
崔博翔
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 171
中文關鍵詞: 正子斷層掃瞄校正部分容積效性
外文關鍵詞: Positron Emiison Tomography, Partial Volume Correction, Partial Volume Effect, Modify Geometric Transfer Matrix
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 正子斷層掃瞄核醫影像因為受到解析度較低的限制,導致影像受到部分容積效性(Partial Volume Effect)發生,進而影響影像準確定量的優點。為了修正部分容積效應,Rousset於1998年提出GTM(Geometry Transfer Matrix)方法,應用於校正腦部影像的部分容積效應,成功恢復影像中受到部分容積效應影響的腦部區域活度。然而,因為GTM方法必須要配合相對的解剖性影像譬如MRI、CT進行影像對位,所以在執行的過程中,會因為影像對位以及影像分割的不準確,影響校正結果。故本論文以GTM演算法為基礎,去除需要解剖性影像的對位與分割步驟,進而完成部分容積效應校正,稱為m-GTM,並與文獻中提到的其他常用演算法做比較。
    m-GTM主要概念是將GTM方法中應用的校正區域縮小至影像像素大小,避免解剖影像對位與分割的需求,但由於待解的聯立方成組矩陣過於龐大,解值所需時間相當長且過程繁雜,於是運用簡化的方法,運算過程中只針對部分未知數求解,最後完成整組影像的校正。由結果可以觀察到,當系統解析度估測誤差為正負±8%範圍之內,mGTM方法較能恢復影像細節與強度值,特別是針對容易受到PVE的物體,其校正結果更優於其他校正方法的表現,且完成的影像也具有診斷方面的潛力。


    Partial volume effect (PVE) is one of the major degradation effects for quantitation in PET due to finite system resolution and spatial sampling. To avoid quantiation bias casued by PVE in PET, correction for PVE is necessary but not routinely applied in clinical practice. There have been many different correction schemes proposed in the literature, including methods of deconvolution, and geometric transfer matrix (GTM). The popular and effective PVC method of geometric transfer matrix (GTM) was proposed by Rousset in 1998, and anatomic information (ex. MRI, CT) is needed in modeling PVE from different regions. Due to the requirement for anatomical images, segmentation and registration between PET and anatomical images are needed, and thus mis-segmentation and mis-registration would potentially introduce errors in the PVC results. In this thesis, a modified GTM method (mGTM) based on previous GTM algorithm was proposed, and the performance of the proposed mGTM was compared to other popular PVC methods from literatures. The major difference between mGTM and GTM is from region-based correction (GTM) to voxel-based processing (mGTM). Therefore, no anatomical information is required. Nevertheless, due to huge amount of data, the computation load for mGTM method is heavy. Thus the computational process in solving the original linear equations is simplfied by taking only a small set of variables each time. The results demonstrated that the proposed mGTM generated more accurate quantitation and better image recovery than other PVC methods and without any need for anatomical information. Future work will include more simulation and clinical data to verify the performance of mGTM method in 3D.

    中文摘要 I 英文摘要 II 目錄 III 圖目錄 IV 表目錄 V 第一章 緒論 1 1.1 研究動機 22 1.2 論文架構 24 第二章 正子斷層掃描介紹 25 2.1 正子斷層掃描物理背景介紹 25 2.2 正子斷層掃瞄儀器 27 2.3 偵檢儀器介紹 28 2.4 同符事件的種類 31 2.5 影響PET解析度的因素 33 2.5.1 偵檢晶體的大小 34 2.5.2 正子射程(Positron Range) 36 2.5.3 非直線路徑(Non-Colinearity) 37 2.5.4 光子穿透深度(DOI, Depth of Interaction) 38 2.5.5 模糊去雜訊(Post-Smoothing) 39 第三章 部分容積效應及校正方法 40 3.1 部分容積效應介紹(PARTIAL VOLUME EFFECT,PVE) 40 3.1.1 單一像素包含多種類型細胞(Tissue Fraction) 41 3.1.2 活度溢出(Spill Over) 43 3.2 影響部分容積效應的因素 44 3.2.1 物體的體積 45 3.2.2 物體的外形 46 3.2.3 物體外的周圍組織 48 3.2.4 影像重建(Image Reconstruction)所使用的濾波器(Filter) 50 3.2.5 計算標準攝取值(Standard uptake Value,SUV)的依據 50 3.3 部分容積效應校正方法(PARTIAL VOLUME CORRECTION,PVC) 51 3.3.1 PVC校正方法的分類 52 3.3.2以影像局部區域為校正目標 53 3.3.2.1恢復係數 (Recovery Coefficient,RC) 53 3.3.2.2幾何轉移矩陣(Geometric Transfer Matrix,GTM) 56 3.3.3以影像像素為校正目標 58 3.3.3.1 Muller-Gartner(MG) 58 3.3.3.2 Modified Muller-Gartner(mMG) 59 3.3.3.3 Region-based voxel-wise (RBV) 60 3.3.3.4 去迴旋積方法(Deconvolution Methods) 62 3.3.3.5去迴旋積修正方法(modify Deconvolution Methods) 66 3.3.5.1應用小波轉換於去迴旋積方法(Incorporation of wavelet-based denoising in iterative Deconvolution,IWDID) 66 3.3.3.5.2 Deconvolution with Median Root Prior (MRP) 68 第四章 改良式幾何轉換矩陣部分容積效應修正法 (Modified GTM) 71 4.1 MGTM與GTM處理範圍的差異 72 4.2 MGTM校正方法介紹 76 4.2.1 局部概念(Local Concept) 77 4.2.2 評估值概念(Estimate Value) 79 4.2.3 Window型態的差異 84 第五章 實驗材料與方法 86 5.1 模擬環境資訊以及數位假體資訊 86 5.1.1 評估mGTM校正不同偵測值表現之數位假體 87 5.1.2 評估mGTM校正不同對比度表現之數位假體 89 5.2 評估MGTM校正模擬腦部影像之數位假體 90 5.3 評估MGTM校正FOV中PSF產生變化之數位假體 92 5.4 初始影像校正程度對於MGTM方法的校正影響 93 5.5 估測PSF之FWHM產生的誤差對於MGTM方法的校正影響 94 5.6 臨床假體 94 5.7 臨床資料 96 5.8 評估準則 98 5.8.1 Percentage Change (PC) 98 5.8.2 Root Mean Square Error (RMSE) 98 第六章 結果與討論 100 6.1單純模擬PVE的效應 100 6.1.1不同物體大小之數位假體校正實驗結果 101 6.1.1.1初始評估值(initial condition) 102 6.1.2不同對比度表現之數位假體實驗結果 116 6.2模擬PVE受雜訊的影響 121 6.2.1不同物體大小之數位假體校正實驗結果 122 6.2.2不同對比度表現之數位假體實驗結果 127 6.3模擬腦部影像之數位假體實驗結果 132 6.4 FOV中PSF產生變化之數位假體實驗結果 136 6.5初始影像校正程度對於MGTM方法的校正影響結果 150 6.6 估測PSF之FWHM產生的誤差對於MGTM方法的校正影響結果 157 6.7臨床假體實驗結果 163 6.7.1球體與背景活度對比度為5:1 164 6.7.2 球體與背景活度對比度為10:1 167 6.7.3 球體與背景活度對比度為15:1 171 6.8臨床資料校正結果 175 6.9綜合討論 179 6.9.1 PVC特性研究 179 6.9.2加入雜訊 180 6.9.3 Brain Phantom 182 6.9.4隨位置變化的解析度 182 6.9.5初始評估值與不均勻解析度對mGTM的影響 183 6.9.6臨床假體實驗 184 6.9.7臨床資料實驗結果 185 第七章 結論與未來發展方向 187 參考資料 190

    [1].Simon R. Cherry, James A. Sorenson, Michael E. Phelps., "Physics in Nuclear Medicine"., 2003.
    [2]Miles N. Wernick, John N. Aarsvold., ”EMISSION TOMOGRAPHY: The Fundamentals of PET and SPECT”, 2004..
    [3].Olivier G. Rousset, Yilong Ma, Alan C Evans.,"Correction for Partial Volume Effects in PET:Principle and Validation",JNM Vol.39 No.5,May 1998
    [4].Olivier G.Rousset, Arman Rahmim, Abass Alavi, Habib Zaidi., "Partial Volume Correction Strategies in PET", PET Clin 2235-249, Feb. 2007
    [5].Joseph A. Thie.,” Understanding the Standardized Uptake Value, Its Methods, and Implications for Usage", JNM Vol.45 No.9,Sep. 2004
    [6].Oliveier G. Rousset.,"Pixel-versus Region-Based Partial Volume Correction in PET", chapter 10 of Quantitative Functional Brain Imaging with Positron Emission Tomography, 1998
    [7].Shyam M. Srinivas,Thiruvenkatasamy Dhurairaj, Sandip Basu, Gonca Bural, Suleman Surti and Abass Alavi ., "A recovery codfficient method for partial volume correction of PET images", Ann Nucl Med 23:341-348, 2009
    [8].Vicent Frouin, Claude Comtat, Anthonin Reilhac, Marie-Claude Gregoire., "Correction of Partial-Volume Effect for PET Striatal Imaging: Fast Implementation and Study of Robustness", J Nucl Med 43:1715-1726, 2002
    [9].Boon-Keng Teo, Youngho Seo, Stephen L. Bacharach, Jorge A. Carrasquillo, Steven K. Libutti, Himanshu Shukla, Bruce H. Hasegawa, Randall A. Hawkins, Benjamin L. Franc., "Partial-Volume Correction in PET: Validation of and Iterative Postreconstruction Method with Phantom and Patient Data", JNM. Vol.48 No.5, May 2007
    [10].Hans W. Muller-Gartner, Jonathan M. Links, Jerry L. Prince, R. Nick Bryan, Elliot McVeigh, Jeffrey P. Leal, Christos Davatzikos, J. James Frost., "Measurement of Radiotracer Concentration in Brain Gray Matter Using Positron Emission Tomography: MRI-Based Correction for Partial Volume Effects", Journal of Cerebral Blood Flow and Metabolism 12:571-583,1992
    [11].Carolyn Cidis Meltzer, Paul E. Kinahan, Phil J. Greer, Thomas E. Nichols, Claude Comtat, Michael N. Cantwell, Michael P. Lin, Julie C. Price., "Comparative Evaluation of MR-Based Partial-Volume Correction Schemes for PET", J Nucl. Med. 40:2053-2065, 1999
    [12].N Boussion, M. Hatt, F. Lamare, Y. Bizais, A. Turzo, C. Cheze-Le Rest, D. Visvikis., "A multiresolution image based approach for correction of partial volume effects in emission tomography", Phys. Med. Biol. 51:1857-1876, 2006
    [13].Ronald Boellaard, Nanda C. Krak, Otto S. Hoekstra, Adriaan A. Lammertsma ., "Effects of Noise, Image Resolution, and ROI Definition on the Accuracy of Standard Uptake Values: A Simulation Study", J Nucl. Med. 45:1519-1527, 2004
    [14].Alfred S. Carasso., "Linear and Nonlinear Image Deblurring: A Documented Study", SIAM J. Numer. Anal. Col. 36 No.6 pp. 1659-1689, 1999
    [15].N. Boussion, C. Cheze Le Rest, M. Hott, D. Visvikis., "Incorporation of wavelet-based denoising in iterative deconvolution for partial volume correction in whole-body PET imaging", Eur J Nucl Med Mol Imaging 36:1064-1075, 2009
    [16].S. Grace Chang, Bin Yu, Vetterli M. ., "Adaptive Wavelet Thresholding for Image Denoising and Compression", IEEE Trans. on Image Processing vol. 9 No. 9, Sep. 2000
    [17].Issam El Naqa, Daniel A. Low, Jeffrey D. Bradley, Milos Vicic, Joseph O. Deasy., "Deblurring of breathing motion artifacts in thoracic PET images by deconvolution methods", Med. Phys. 33, Oct. 2006
    [18].Olivier G. Rousset, D.Louis Collins, Arman Rahmim, Dean F. Wong ., "Design and Implementation of an Automated Partial Volume Correction in PET: Application to Dopamine Receptor Quantification in the Normal Human Striatum", J Nucl Med 49:1097-1106, 2008
    [19].Keh-Shih Chuang, Hong-Long Tzeng, Sharon Chen, Jay Wu, Tzong-Jer Chen ., "Fuzzy c-means clustering with spatial information for image segmentation", Computerized Medical Imaging and Graphics 30 9-15, 2006
    [20].Hsuan-Ming Huang, Ing-Tsung Hsiao, Christian Wietholt, Ching-Han Hsu., "A Voxel-Based Partial Volume Correction in Nuclear Medicine", Proc. of SPIE Vol. 6144, 614446P, 2006
    [21].Merisaari Harri, Teras Mika, Hirvonen Jussi, Nevalainen Olli, Hietala Jarmo ., "Evaluation of partial volume effect correction methods for brain positron emission tomography: Quantification and reproducibility", J. Med. Phys., June 22 2007
    [22]S. Alenius and U. Ruotsalainen, "Bayesian image reconstruction for emission tomography based on median root prior", European Journal of Nuclear Medicine, vol. 24, no. 3, pp. 258–265, Mar. 1997.
    [23].Gallivanone F., Stefano A. Grosso E., Canevari C., Gianolli L., Messa C., Gilardi M.C., Castiglioni I., "PVE Correction in PET-CT Whole-Body Oncological Studies From PVE-Affected Images", IEEE Trans. Nucl. Science 0018-9499, 2011
    [24].Benjamin A. Thomas, Kjell Erlandsson, Marc Modat, Lennart Thurfiell, Rik Vandenberghe, Sebastien Ourselin, Brain F. Hutton., "The importance of appropriate partial volume correction for PET quantification in alzheimer's disease", Eur. J. Nucl. Med. Mol. Imaging, Feb. 2011
    [25]. Jussi Tohka, Anthonin Reilhac., "Deconvolution-based partial volume correction in Raclopride-PET and Monte Carlo comparison to MR-based method", NeuroImage 39: 1570-1584, 2008
    [26]. Rafael C. Gonzalez, Richard E. Woods., "Digital Image Processing".,2008.
    [27].Perrine Tylski, Simom Stute,Nicolas Grotus, Kaya Doyeux, Sebastien Hapdey, Isabelle Gardin, Bruno Vanderlinden, Irene Buvat.,"Comparative Assessment of Methods for Estimating Tumor Volume and Standardized Uptake Value in F-18-FDG PET",JNM. Vol. 51 No.2,Feb.2010
    [28]Marine Soret, Stephen L. Bacharach, Irene Buvat., ”Partial Volume Effect in Tumor Imaging”, J Nucl. Med. 48:932-945, 2007
    [29].許若瑋, "Iterative Ordered-Subsets Algorithms for Small Animal PET Imaging", 清華大學碩士論文, June 2008
    [30].張世穎,"Use Inverse Fourier Rebinning in Three Dimension Iterative Image Reconstruction", 清華大學碩士論文, July 2009

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE