簡易檢索 / 詳目顯示

研究生: 牟柏丞
Mou, Po-Cheng
論文名稱: 流形上的非線性拉普拉斯算子之梯度估計
A note on gradient estimate for p-Laplacian on complete manifolds
指導教授: 宋瓊珠
Sung, Chiung-Jue
口試委員: 高淑蓉
Kao, Shu-Jung
王嘉平
Wang, Jia-Ping
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 40
中文關鍵詞: 流形拉普拉斯梯度估計
外文關鍵詞: manifold, Laplacian, gradient estimate
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在本篇論文中,我們研究在完備流形上非線性拉普拉斯算子的梯度估計,並研究當主特徵根達到最大值時,流形的頻譜分析。


    In this papar, we study the gradient estimate for p-Laplacian on complete manifolds with Ricci curvature bounded from below. We also study the bottom spectrum when the first eigenvalue of the p-Laplacian achieves its maximum.

    1. Introduction 2 2. Preliminary 3 3. Gradient Estimate for p-Laplacian 8 3.1. Gradient Estimate for Eigenfunction 8 3.2. Proof of Main Theorem 14 4. Splitting Theorem 28 4.1. Splitting Theorem for Laplacian 29 4.2. Splitting Theorem for p-Laplacian 34 References 39

    [1] S. Buckley and P. Koskela, Ends of metric measure spaces and Sobolev inequality, Math. Z.
    252 (2005), 275-285
    [2] S. Y. Cheng, Eigenvalue comparison theorems and its geometric applications, Math. Z. 143
    (1975), 289-297
    [3] J. Cheeger and D. Gromoll, The splitting theorem for manifolds of nonnegative Ricci cur-
    vature, J. Di . Geom. 6 (1971), 119-128
    [4] S. Y. Cheng and S. T. Yau, Di erential equations on Riemannian manifolds and their
    geometric applications, Comm. Pure Appl. Math. 28 (1975), 333-354
    [5] J. Lee, The Spectrum of an Asymptotically Hypervolic Einstein Manifold, Comm. Anal.
    Geom. 3 (1995), 253-271
    [6] P. Li, Harmonic functions and applications to complete manifolds, preprint (available on
    the author's homepage) (2004)
    [7] P. Li and J. Wang, Complete manifolds with positive spectrum, J. Di erential Geom. 58
    (2001), 501-534
    [8] P. Li and J. Wang, Complete manifolds with positive spectrum, II. J. Di erential Geom. 62
    (2002), 143-162
    [9] P. Li and J. Wang, Connectedness at in nity of complete Kahler manifolds, Amer. J. Math.
    131 (2009), 771-817
    [10] P. Li and J. Wang, Weighted Poincare inequality and rigidity of complete manifolds, Ann.
    Sci. Ecole. Norm. Sup. (4) 39 (2006), 921-982
    [11] L. Salo -Coste, Uniformly elliptic operators on Riemannian manifolds, J. Di erential Geom.
    36 (1992), no. 2, 417-450
    [12] R. Schoen and S. T. Yau, Lectures on Di erential Geometry, International Press, Boston,
    (1994)
    [13] C. J. Sung and J.Wang, Sharp gradient estimate and spectral rigidity for p-Laplacian, Math.
    Res. Lett. 21 (2014), no. 4, 885-904
    [14] X. Wang and L. Zhang, Local gradient estimate for p-harmonic functions on Riemannian
    manifolds, Comm. Anal. Geom. 19 (2011), 759{772
    [15] S. T. Yau, Harmonic function on complete Riemannian manifold, Comm. Pure Appl. Math.
    28 (1975), 201-228

    QR CODE