研究生: |
牟柏丞 Mou, Po-Cheng |
---|---|
論文名稱: |
流形上的非線性拉普拉斯算子之梯度估計 A note on gradient estimate for p-Laplacian on complete manifolds |
指導教授: |
宋瓊珠
Sung, Chiung-Jue |
口試委員: |
高淑蓉
Kao, Shu-Jung 王嘉平 Wang, Jia-Ping |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 40 |
中文關鍵詞: | 流形 、拉普拉斯 、梯度估計 |
外文關鍵詞: | manifold, Laplacian, gradient estimate |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇論文中,我們研究在完備流形上非線性拉普拉斯算子的梯度估計,並研究當主特徵根達到最大值時,流形的頻譜分析。
In this papar, we study the gradient estimate for p-Laplacian on complete manifolds with Ricci curvature bounded from below. We also study the bottom spectrum when the first eigenvalue of the p-Laplacian achieves its maximum.
[1] S. Buckley and P. Koskela, Ends of metric measure spaces and Sobolev inequality, Math. Z.
252 (2005), 275-285
[2] S. Y. Cheng, Eigenvalue comparison theorems and its geometric applications, Math. Z. 143
(1975), 289-297
[3] J. Cheeger and D. Gromoll, The splitting theorem for manifolds of nonnegative Ricci cur-
vature, J. Di. Geom. 6 (1971), 119-128
[4] S. Y. Cheng and S. T. Yau, Dierential equations on Riemannian manifolds and their
geometric applications, Comm. Pure Appl. Math. 28 (1975), 333-354
[5] J. Lee, The Spectrum of an Asymptotically Hypervolic Einstein Manifold, Comm. Anal.
Geom. 3 (1995), 253-271
[6] P. Li, Harmonic functions and applications to complete manifolds, preprint (available on
the author's homepage) (2004)
[7] P. Li and J. Wang, Complete manifolds with positive spectrum, J. Dierential Geom. 58
(2001), 501-534
[8] P. Li and J. Wang, Complete manifolds with positive spectrum, II. J. Dierential Geom. 62
(2002), 143-162
[9] P. Li and J. Wang, Connectedness at innity of complete Kahler manifolds, Amer. J. Math.
131 (2009), 771-817
[10] P. Li and J. Wang, Weighted Poincare inequality and rigidity of complete manifolds, Ann.
Sci. Ecole. Norm. Sup. (4) 39 (2006), 921-982
[11] L. Salo-Coste, Uniformly elliptic operators on Riemannian manifolds, J. Dierential Geom.
36 (1992), no. 2, 417-450
[12] R. Schoen and S. T. Yau, Lectures on Dierential Geometry, International Press, Boston,
(1994)
[13] C. J. Sung and J.Wang, Sharp gradient estimate and spectral rigidity for p-Laplacian, Math.
Res. Lett. 21 (2014), no. 4, 885-904
[14] X. Wang and L. Zhang, Local gradient estimate for p-harmonic functions on Riemannian
manifolds, Comm. Anal. Geom. 19 (2011), 759{772
[15] S. T. Yau, Harmonic function on complete Riemannian manifold, Comm. Pure Appl. Math.
28 (1975), 201-228