研究生: |
徐聖傑 |
---|---|
論文名稱: |
利用全反射螢光顯微系統量測DNA於液態環境中不同固化方式之動態行為 The Dynamic behavior study of DNA under different immobilization methods in liquid environment by Total Internal Reflection Fluorescence Microscopy |
指導教授: | 許志楧 |
口試委員: |
崔豫笳
楊自森 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 70 |
中文關鍵詞: | 量子點 、全內反射式螢光顯微鏡 、單分子 |
外文關鍵詞: | quantumdot, TIRF, single molecule |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
固化於基因晶片上的DNA 探針之動態行為,是以基因晶片做為研究工具的科學家們所感興趣的問題。本實驗透過biotin-streptavidin 的非共價鍵結使DNA一端固化於BSA以及PEG玻片上,希望能夠了解DNA是像海草般在溶液中搖擺;或是像繩索般平躺於玻片表面,因為這兩種不同運動模式將影響DNA雜和之效率。
在螢光標定上,選用了量子點,因為量子點具有螢光亮度強、光穩定性佳無光漂白之特性。我們以TIRFM偵測長度為2834 base pairs且已標定量子點的DNA分子,DNA以biotin-streptavidin方式固化於玻片表面,並透過即時偵測螢光訊號強度隨時間變化建立出單分子追蹤技術,並藉由TIRFM產生的漸逝波,估計螢光於Z軸深度上的位移,並以此推測DNA在玻片表面上之動態行為。
研究發現,以biotin-streptavidin方式鍵結固化於玻片表面之DNA,觀察到如類似海草,靜止於溶液中,並發現少數來回擺動於特定二個位置之情況,對於擺動之現象,可能是利用BSA方式固化後,表面修飾不完全,而殘留些缺陷,使dsDNA附著於此,因此嘗試以PEG固化方式取代BSA修飾表面,排除DNA來回擺動於特定二個位置之情況,此外兩種不同表面固化,得到之dsDNA晃動程度也略些差異。
The dynamic behavior of DNA molecules , when immobilized on
DNA microarrays , has puzzled the gene chip researchers .In this study,
we used biotin-streptavidin interaction binding to the glass surface at the one end of DNA. Finally, we'll try to distinguish that whether DNA is like seaweed wavering in the solution or like a rope sticking on the surface of glass. The two modes have quite different hybridization efficiency.
For fluorescence labeling, quantum dot(Qdot) is a novel fluorescent platform that can emit the fluorescence continually and stably.The TIRF is used to measure the vertical location of fluorescence dye. We measure the TIRF signal of Qdot labeled 2834 bp DNA molecules that were immobilized on the coverslip surface via biotin-streptavidin, and we can estimate the position of Qdot by Gaussian distribution.
The result shows that DNA molecules behave like seaweeds and static in the solution, or swing in the particular two position on bsa-biotin coated surface. This phenomenon maybe be caused by hot spot on BSA-biotin coated surface. Therfore, we use PEG-biotin to coat surface to prevent DNA back and forth swing in the particular two position.
[1] H. J. Leamy, "Charge collection scanning electron microscopy," Journal of Applied Physics 53, R51-R80 (1982).
[2] C. J. S. Chen, Walter F., "Introduction to Scanning Tunneling Microscopy,"American Journal of Physics 62, 571-574 (06/1994).
[3] D. Gerhold, T. Rushmore, and C. T. Caskey, "DNA chips: promising toys have become powerful tools," Trends in Biochemical Sciences 24, 168-173 (1999).
[4] H. Zhu, and M. Snyder, "Protein chip technology," Current Opinion in Chemical Biology 7, 55-63 (2003)
[5] D. M. Spencer, T. J. Wandless, S. L. Schreiber, and G. R. Crabtree, "Controlling signal transduction with synthetic.
[6]http://astronomy.swin.edu.au/cosmos/R/Rayleigh+Criterion.
[7http://www.olympusmicro.com/primer/java/jablonski/lightandcolor/index.html.
[8] http://www.abdserotec.com/resources/flow-cytometry-ebook/principles-of-fluorescence/stokes-shift.html.
[9] R. H. Webb, "Confocal optical microscopy " Reports on Progress in Physics 59, 427-471 (03/1996).
[10] D. Axelrod, "Total Internal Reflection Fluorescence Microscopy in Cell Biology," Traffic 2, 764-774 (2001).
[11] N. Pouget, C. Dennis, C. Turlan, M. Grigoriev, M.
Chandler, and L. Salome,"Single-particle tracking for DNA tether length monitoring," Nucl. Acids Res. 32, e73- (2004).14. B. v. d. Broek, F. Vanzi, D. Normanno, F. S. Pavone, and G. J. L.Wuite, "Real-time observation of DNA looping.
[12] X. Qu et al., Proc Natl Acad Sci U S A 101, 11298 (2004).
[13] R. Pelle, and N. B. Murphy, "Northern hybridization: rapid and simple electrophoretic conditions," Nucl. Acids Res. 21, 2783-2784 (1993).
[14http://www.olympusmicro.com/primer/techniques/fluorescence/fluorointrohome.html.
[15] http://femtolab.chem.nthu.edu.tw/.
[16] I. Rasnik, S. A. McKinney, and T. Ha, Nat Methods 3, 891 (2006).
[17] M. K. Cheezum, W. F. Walker, and W. H. Guilford, Biophys J 81, 2378 (2001).
[18]http://www.invitrogen.com/site/us/en/home/brands/Molecular-Probes/Key-Molecular-Probes-Products/Qdot.htm.
[19] X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, "Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics," Science 307, 538-544 (2005).
[20] A. Ganguly, M. J. Rock, and D. J. Prockop, "Conformation-sensitive gel electrophoresis for rapid detection of single-base differences in double-stranded PCR products and DNA fragments: evidence for solvent-induced bends in DNA States of America 90, 10325-10329 (1993).
[21] M. P. Gordon, T. Ha, and P. R. Selvin, Single-molecule high-resolution imaging with photobleaching. PNAS, 2004.
[22] I. F. Sbalzarini, and P. Koumoutsakos, "Feature point tracking and trajectory analysis for video imaging in cell biology," Journal of Structural Biology 151, 182-195 (2005).
[23] R. E. Thompson, D. R. Arson, and W. W. Webb, Precise nanometer localization analysis for individual fluorescent probe. Biophysical Journal , 2002. 82: p. 2775-2783.
[24] M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, and D. J. Nesbitt, "Nonexponential ``blinking'' kinetics of single CdSe quantum dots: A universal power law behavior," The Journal of Chemical Physics 112, 3117-3120 (2000).
[25]F.C Chien, C.W Kand Peilin Chen ,Analyst, 2011, 136, 1608.
[26] G. Dragoi, S. Tonegawa," Preplay of future place cell sequences by hippocampal cellular assemblies" Nature 469, 397–401(20 January 2011).
[27] Advances in surface-based assays for single molecules /Fordyce, P.M..Valentine, M.T..Block, S.M. (431).