研究生: |
蕭鈞全 Xiao, Jun-Quan |
---|---|
論文名稱: |
解析Fe/Ni/Pb(111)與FeTe/Bi2Te3的原子尺度磁性結構 Resolving Atomic-Scale Magnetism of Fe/Ni/Pb(111) and FeTe/Bi2Te3 |
指導教授: |
徐斌睿
Hsu, Pin-Jui |
口試委員: |
陸大安
Luh, Dah-An 蘇蓉容 Su, Jung-Jung |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 83 |
中文關鍵詞: | 超導 、YSR束縛態 、拓樸絕緣體 、磁性薄膜 |
外文關鍵詞: | superconductivity, Yu-Shiba-Rusinov state, 3D topological insulator, magnetic thin-film |
相關次數: | 點閱:42 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
拓樸超導體是凝態物理領域中的一種熱門新穎材料,並可透過數種異質結構(heterostructure)來實現,例如Fe鐵磁性(ferromagnetic)原子鍊在超導Pb(110)表面上。為了朝這個目標前進,我們成長了兩種異質結構系統: Fe/Ni Kagome/Pb(111)和 FeTe/Bi2Te3,並使用掃描穿隧顯微鏡(STM)探測其性質。
在Fe/Ni Kagome/Pb(111)系統中,磁性雜質Fe微量摻雜於s波超導體Ni Kagome/Pb(111)上,Fe原子帶有的自旋與庫柏對的交互作用引發了Yu-Shiba-Rusinov束縛態。我們使用超導探針量測此系統的掃描穿隧能譜(STS)及空間微分電導圖,雖然團隊的前屆碩士生林子軒曾使用普通導體探針研究此系統,超導探針的量測具有高能量解析度的效果,能更清楚地解析出存在於超導能隙內的特徵。然而,因為超導探針自身的狀態密度(density of states)會進入到STS訊號中, STS數據並不直接關聯到樣品的狀態密度,故我們也針對STS進行反卷積,從中提取樣品自身的狀態密度。
在第二個主題,我們將磁性原子Fe鍍在3D拓樸絕緣體Bi2Te3並形成FeTe薄膜,研究具有六方(hexagonal)形態、條紋(stripe)形態疊紋圖樣(Morié pattern)的兩種FeTe薄膜的原子結構、磁性及超導性。在超導性方面,我們確認了0.32K溫度下六方形態和條紋形態兩種薄膜皆不具有超導。而在磁性方面,我們在條紋形態FeTe薄膜使用多種不同自旋極化方向的探針,觀察到了原子尺度的條紋變化,這說明這種薄膜可能具有反鐵磁結構;我們同樣使用有自旋極化的探針量測六方形態FeTe薄膜,然而並沒有觀察到地形特徵發生變化,因此該薄膜可能為非磁性或鐵磁性。
Topological superconductor is one of popular novel materials in the field of condensed matter physics, which can be produced through several kinds of heterostructures, such as a ferromagnetic Fe chain on a superconducting Pb(110) surface. In order to achieve this goal, we have grown two types of heterostructure systems: Fe/Ni Kagome/Pb(111) and FeTe/Bi2Te3, and investigated their properties by scanning tunneling microscopy (STM).
In the Fe/Ni Kagome/Pb(111) system, a small amount of magnetic impurity Fe is doped on the s-wave superconductor Ni Kagome/Pb(111). The interaction between spins of Fe atoms and Cooper pairs leads to the emergence of Yu-Shiba-Rusinov (YSR) states. We have measured the scanning tunneling spectroscopy (STS) and spatially resolved conductance maps of this system with superconducting STM probe. Although the previous student, Tzu-Hsuan Lin, had investigated this system by normal conductor probe, the measurements with superconducting probe provides high energy resolution, which result in more detailed features appearing within the superconducting gap. But, the STS data taken with superconducting probe would not be simply related to the density of state (DOS) of the sample because the superconducting probe will contribute its own superconducting DOS into the STS signal. Therefore, I also performed deconvolution on STS data to extract the sample's own DOS.
For the second topic, we deposited magnetic atoms Fe on 3D topological insulator Bi2Te3 to form FeTe thin films, and studied the atomic structure, magnetism and superconductivity of two types of FeTe thin films with hexagonal and stripe phase Moiré patterns. Regarding superconductivity, we confirmed that neither the hexagonal nor the stripe phase films exhibited superconductivity at the temperature of 0.32K. In terms of magnetism, we observed atomic-scale pattern change in the stripe phase FeTe films using probes with different spin polarization directions, which implies a possible antiferromagnetic feature of the stripe phase FeTe. We also measured the hexagonal FeTe film using a spin-polarized probe, but did not observe any change in topographic images. The result suggest that hexagonal FeTe thin film might be non-magnetic or ferromagnetic.
[1] S. Nadj-Perge, et al., “Observation of Majorana fermions in ferromagnetic atom-ic chains on a superconductor, ” Science, vol. 346, no. 6209, pp. 602–607, Oct. 2014
[2] 林子軒,《磁性原子在超導鎳Kagome晶格之研究》,碩士論文,物理學研究所,國立清華大學,台灣,2022
[3] L. Fu and C. L. Kane, “Superconducting Proximity Effect and Majorana Fermi-ons at the Surface of a Topological Insulator,” Physical Review Letters, vol. 100, no. 9, Mar. 2008
[4] M. X. Wang, et al., “The coexistence of superconductivity and topological order in the Bi2Se3 thin films,” Science, vol. 336, no. 6077, pp. 52–55, Mar. 2012
[5] C. Z. Chang, et al., “Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator,” Science, vol. 340, no. 6129, pp. 167–170, Mar. 2013
[6] J. Wang, et al., “Chiral topological superconductor and half-integer conductance plateau from quantum anomalous Hall plateau transition,” Physical Review B, vol. 92, no. 6, Aug. 2015
[7] S. M. Albrecht, A. P. Higginbotham, et al., “Exponential protection of zero modes in Majorana islands,” Nature, vol. 531, pp. 206–209, 2016
[8] V. Mourik, et al., “Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices,” Science, vol. 336, no. 6084, pp. 1003–1007, Apr. 2012
[9] J. Bardeen, L. N. Cooper and J. R. Schrieffer, “Theory of superconductivity, ” Physical Review, vol. 108, pp. 1175, Jul. 1957
[10] Y. Luh, “Bound state in superconductors with paramagnetic impurities, ” Acta Physica Sinica, vol. 21, no. 1, pp. 75–91, Jan. 1965
[11] H. Shiba, “Classical Spins in Superconductors,” Progress of Theoretical Phys-ics, vol. 40, no. 3, pp. 435–451, Sep. 1968
[12] A. I. Rusinov, “Superconductivity near a paramagnetic impurity,” JETP Let-ters, vol. 9 , Jan. 1969.
[13] S. Kezilebieke, R. Žitko, et al., “Observation of Coexistence of Yu-Shiba-Rusinov States and Spin-Flip Excitations,” Nano Letters, vol. 19, no. 7, pp. 4614–4619, Jun. 2019
[14] B. W. Heinrich, J. M. Pascual, and K. Franke, “Single magnetic adsorbates on s -wave superconductors,” Progress in Surface Science, vol. 93, no. 1, pp. 1–19, Feb. 2018
[15] L. Farinacci, et al., “Tuning the Coupling of an Individual Magnetic Impurity to a Superconductor: Quantum Phase Transition and Transport,” Physical Review Letters, vol. 121, no. 19, Nov. 2018
[16] 陳家儒,《於單原子層鎳鉛合金與鎳奈米島由鄰近效應所引發之超導態》,碩士論文,物理學研究所,國立清華大學,台灣,2020
[17] Y. H. Lin, C.J. Chen, N. Kumar, et al. “Fabrication and Imaging Monatomic Ni Kagome Lattice on Superconducting Pb (111).” Nano Letters, vol. 22, no. 21, pp. 8475 – 8481, Oct. 2022
[18] L. Kang, et al., “Phase-controllable growth of ultrathin 2D magnetic FeTe crys-tals,” Nature Communications, vol. 11, no. 1, Jul. 2020
[19] D. S. Parker, “Strong 3D and 1D magnetism in hexagonal Fe-chalcogenides FeS and FeSe vs. weak magnetism in hexagonal FeTe,” Scientific Reports, vol. 7, no. 3388, Jun. 2017
[20] S. Manna, et al., “Interfacial superconductivity in a bi-collinear antiferromag-netically ordered FeTe monolayer on a topological insulator,” Nature Communi-cations, vol. 8, no. 14074, Jan. 2017
[21] 伍秀菁、汪若文、林美吟編輯,真空技術與應用,國科會精密儀器發展中心,2001
[22] Edwards Inc.,“Edwards XDS35iC Scroll Pump” www.acrossinternational.com. https://www.acrossinternational.com/edwards-xds35ic-25cfm-chemical-resistant-scroll-pump-w-silencer.html
[23] C. Bishop, Vacuum deposition onto webs, films and foils. William Andrew, 2011
[24] Hofmann ,“ion pump,” philiphofmann.net. https://philiphofmann.net/ultrahighvacuum/ind_ionpump.html
[25] Trigger Technology Inc.,“Titanium Sublimation Pump (TSP),” www.trigger-tech.com. http://www.trigger-tech.com/infor_detail.php?p_id=173&id=283
[26] J. Taylor, “How does an ion gauge work?,” Arun Microelectronics Ltd. https://arunmicro.com/news/how-does-an-ion-gauge-work/
[27] Instruction Manual UHV Evaporator EFM 2/3(s)/4(s) Triple Evapora-tor EFM3T(s) IBAD Evaporator EFM 3i., FOCUS, Germany, 2017
[28] G. Binnig, et al. “Surface studies by scanning tunneling microscopy,” Physical review letters, vol. 49, no. 1, pp. 57– 61, 1982.
[29] J. Chen, Introduction to Scanning Tunneling Microscopy, 3rd ed. U.S.A., Oxford University Press, 2021.
[30] J. Tersoff and D. R. Hamann, “Theory of the scanning tunneling microscope,” Physical Review B, vol. 31, no. 2, pp. 805–813, Jan. 1985
[31] J. Tersoff and D. R. Hamann, “Theory and Application for the Scanning Tunnel-ing Microscope,” Physical Review Letters, vol. 50, no. 25, pp. 1998–2001, Jun. 1983
[32] V. A. Ukraintsev, “Data evaluation technique for electron-tunneling spectrosco-py,” Physical Review B, vol. 53, no. 16, pp. 11176–11185, Apr. 1996
[33] K. Franke, G. Schulze, and J. Pascual, “Competition of Superconducting Phe-nomena and Kondo Screening at the Nanoscale,”Science, vol. 332, no. 6032, pp. 940–944, May 2011
[34] M. N. Huda, “Epitaxial growth of lateral graphene/hexagonal boron nitride heter-ostructures,” M. S. thesis, Sch. of Science, Aalto Univ., Finland, 2016.
[35] M. Assig, et al., “A 10 mK scanning tunneling microscope operating in ultra high vacuum and high magnetic fields,” Review of Scientific Instruments, vol. 84 no. 3, 2013.
[36] USM1300S He 3E. Operating Manual., Unisoku, Japan, 2018.
[37] S. Courts, “CernoxTM Resistance Temperature Sensors for High Energy Physics Applications,” Lake Shore Cryotronics, Inc., U.S.A.
[38] P. Beck, et al., “Spin-orbit coupling induced splitting of Yu-Shiba-Rusinov states in antiferromagnetic dimers,” Nature Communications, vol. 12, no. 2040, Apr. 2021
[39] N. Hatter, B. W. Heinrich, M. V. Ruby, et al., “Magnetic anisotropy in Shiba bound states across a quantum phase transition,” Nature Communications, vol. 6, no. 8988, Nov. 2015
[40] L. Schneider, et al. “Atomic-scale spin-polarization maps using functionalized superconducting probes,”Science Advances, vol. 7, no. 4, 2021