簡易檢索 / 詳目顯示

研究生: 黃澤峯
Huang, Tse-Feng
論文名稱: 利用搜尋法及影價鄰近解評估求解客服中心人員排班問題
Solve Call Center Agent Scheduling Problems by Search Algorithms and Shadow Price to Evaluate Neighborhood Solutions
指導教授: 洪一峯
Hung, Yi-Feng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 39
中文關鍵詞: 客服中心人員排班多技能模擬退火法塔布搜尋法影價啟發式演算法
外文關鍵詞: call center, agent scheduling, multiple skills, simulated annealing, tabu search, shadow price, heuristic algorithm
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近十年來服務業成長很快,競爭激烈。對服務業來說,如何有效利用人力資源是一個重要的課題。客服中心的營運尤其是現今企業的重要服務之ㄧ。本篇論文利用搜尋法和影價鄰近解評估求解客服中心之人員排班問題。為了使不同的技能需求達到最大的滿足,目標值是要找出一最佳排班表使所缺乏的人力資源成本為最少。
    在本篇論文研究中,給定各時間區段有變動需求、和配合政府法規、公會限制、公司內部規定的已知客服人員班別類型並由四種搜尋法:傳統的模擬退火法和塔布搜尋法、和利用影價鄰近解評估的模擬退火法和塔布搜尋法來求解客服中心人員排班問題。最後實驗顯示四種搜尋法中,利用影價鄰近解評估的塔布搜尋法表現最好。


    In the last few decades, there is a huge growth in service industries. Therefore, how to utilize human resources efficiently is an important issue for service industries. Call center operation is one of the most important service operations for today’s company. The focus of this study is to solve a call center agent scheduling problem by using search algorithms. Also, shadow price information is used to help evaluating neighborhood solutions. The objective of our problem is to minimize the manpower shortage cost of various skills demands.
    Given time-varying skill demands and known patterns in call centers, we have to assign a pattern to each day of each agent under the restriction of government policy, union regulations, and company strategies. This study experiments four search methods. Two of them are traditional tabu search and traditional simulated annealing. The other two methods are tabu search and simulated annealing that are improved by using shadow price information to evaluate the neighborhood solution. The experiment results show that tabu search algorithm with neighborhood solutions evaluated by shadow price performs best among the four methods.

    摘要 I Abstract II 1. Introduction 1 1.1 General background information 1 1.2 Research motive 5 1.3 Research purpose 6 2. Solution approach 7 2.1 Linear programming formulation for labor hour allocation in a period 9 2.2 Neighborhood solutions evaluated by shadow price 11 2.3 Heuristic search methods 14 2.3.1 Simulated annealing 14 2.3.2 Tabu search 23 3. Computational Experiment and Results 27 3.1 Experiments with different data parameters 27 3.2 Algorithm Parameters Design 29 3.3 Result and analysis 30 4. Conclusions 35 References 36

    李明德、曾俊欽 (2003),「科技客服,客服中心的系統建置」,培生教育出版集團。
    李英碩 (2007),「客服中心人員排班問題之整數規劃」,國立清華大學工業工程與工程管理學系碩士論文。
    林詩芹 (2003),「以限制規劃構建全年無休服務人員排班模式 ─ 以客服人員排班為例」,國立交通大學運輸科技與管理學系碩士論文。
    侯文哲 (2002),「護理人員排班資訊系統之建立與探討」,國立成功大學工業管理科學系碩士論文。
    張芳瑜 (2008),「利用搜尋法求解客服中心人員排班問題」,國立清華大學工業工程與工程管理學系碩士論文。
    CPLEX, (2001), Reference Manual. ILOG Optimization.
    Atlason, J. and Epelman, M. A. and Henderson, S. G. (2004), “Call center staffing with simulation and cutting plane methods”, Annals of Operations Research, vol. 127, pp. 333-358.
    Aykin, T. (1996), “Optimal shift scheduling with multiple break windows”, Management Science, vol. 42, no. 4, pp. 591-602.
    Bailey, J. (1985), “Integrated days off and shift personnel scheduling”, Computers and Industrial Engineering, vol. 9, no. 4, pp. 395-404.
    Barboza, A. O. and Carnieri, C. and Steiner, M. T. A. and Siqueira, P. H. (2003), “Operations research techniques in the call center schedule problem”, Gestao & Producao, vol. 10, no. 1, pp. 109-127.
    Bartholdi, J. J. (1981), “A graranteed-accuracy round-off algorithm for cuclic scheduling and set covering”, Operations Research, vol. 29, pp. 501-510.
    Brusco, M. J. and Jacobs, L. W. (1993), “A simulated annealing approach to the cyclic staff-scheduling problem”, Naval Research Logistics, vol. 40, no. 1, pp. 69-84.
    Buffa, E. S. and Cosgrove, M. J. and Luce, B. J. (1976), “An integrated work shift scheduling system”, Decision Sci, vol. 7, pp. 620-630.
    Cai, X. and Li, K. N. (2000), “A genetic algorithm for scheduling staff of mixed skills under multi-criteria”, European Journal of Operational Research, vol. 125, pp. 359-369.
    Cezik, M. T. and L’Ecuyer, P. (2005), “Staffing multiskill call centers via linear programming and simulation”, Working paper, GERAD and Department d’Informatique et de Recherche Operationnelle Universite de Montreal.
    Cheng, B. M. W. and Lee, J. H. M. and Wu, J. C. K. (1997), “A nurse rostering system using constraint programming and redundant modeling”, IEEE Transactions on Information Technology in Biomedicine, vol. 1, no. 1, pp. 44-54.
    Chun, H. W. and Chan, H. C. and Lam, P. S. and Tsang, M. F. and Wang, J and Yeung, W. M. (2000), “Nurse rostering at the hospital authority of Hong Kong”, In proceedings of AAAI/IAAI Conference.
    Dantzig, G. B. (1954), “A comment on edie’s traffic delays at toll booths”, Operation Research, vol. 2, pp. 339-341.
    Darmoni, S. J. and Fajner, A. and Mahé, N. and Vondracek, M. and Stelian, O. and Baldenweck, M. (1995), “Horoplan: computer-assisted nurse scheduling using constraint-based programming”, Journal of the Society for Health Systems, vol. 5, no. 1, pp. 41-54.
    Easton, F. F. and Mansour, N. (1993), “A distributed genetic algorithm for employee staffing and scheduling problems”, In Proceedings of the 5th International Conference on Genetic Algorithms, pp. 360-367.
    Eitzen, G. and Panton, D. (2004), “Multi-skilled workforce optimisation”, Annals of Operations Research, vol. 127, pp. 359-372.
    Glover, F. (1977), “Heuristics for integer programming using surrogate constraints”, Decision Science, vol. 8, no. 1, pp. 156-166.
    Henderson, W. B. and Berry, W. L. (1976), “Heuristic methods for telephone operator shift scheduling: an experimental analysis”, Management Science, Vol. 22, No. 12, pp. 1372-1380.
    Holland, J.H. (1975), “Adaptation in natural and artificial systems”, University of Michigan Press(Second edition: MIT Press, 1992).
    Jarrah, A. I. and Bard, J. F. and deSilva, A. H. (1994), “Solving large-scale tour scheduling problem”, Management Science, vol. 40, no. 9, pp. 1124-1144.
    Keith, E. G. (1979), “Operator scheduling”, AIIE Transactions, vol. 11, no. 1, pp. 37-41.
    Kelley, J. E. (1960), “The cutting-plane method for solving convex programs”, Journal of the Society for Industrial and Applied Mathematics, vol. 8, no. 4, pp. 1383-1394.
    Kirkpatrick, S. and Gelatt, C. D. and Vecchi, M. P. (1983), “Optimization by simulated annealing”, Science, vol. 200, no. 4598, pp. 671-680.
    Lundy, M. and Mess, A. (1986), “Convergence of an annealing algorithm,” Mathematical Programming, vol. 34, pp. 111-124.
    Mabert, V. A. and Watts, C. A. (1982), “A simulation analysis of tour-shift construction procedures”, Management Science, vol. 28, no. 5, pp. 520-532.
    Mehrotra, A. and Murphy, K. E. and Trick, M. A. (2000), “Optimal shift scheduling: a branch-and-price approach”, Naval Research Logistics, vol. 47, no.3, pp. 185-200.
    Metropolis, N. and Rosenbluth, A.W. and Teller, A. H. (1953), “Equation of state calculations by fast computing machines”, Journal of Chemistry Physics, vol. 21, pp.1087-1092.
    Morris, J. G. and Showalter, M. J. (1983), “Simple Approaches to Shift, Days-Off and Tour Scheduling Problems”, Management Science, vol. 29, no. 8, pp. 942-950.
    Segal, M. (1974), “The operator-scheduling problem: a network-flow approach”, Operations Research, vol. 22, no. 4, pp. 808-823.
    Thompson, G. M. (1997), “Assigning telephone operators to shifts at new brunswick telephone company”, Interface, vol. 27, no. 4, pp. 1-11.
    Topaloglu, S. and Ozkarahan, I. (2002), “Implicit optimal tour scheduling with flexible break assignments”, Computers and Industrial Engineering, vol. 44, pp. 75-89

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE