研究生: |
陳彥如 Chen, Yen Ju |
---|---|
論文名稱: |
矽基振盪器於射頻波段之應用與實踐 Applications and Implementations of Silicon-Based Oscillators at RF Region |
指導教授: |
朱大舜
Chu, Ta Shun |
口試委員: |
吳仁銘
劉怡君 孟慶宗 王毓駒 |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 126 |
中文關鍵詞: | 振盪器 、駐波振盪器 、太赫茲 、注入鎖定 、相位雜訊 、相位鑑別器 |
外文關鍵詞: | oscillator, standing-wave oscillator, terahertz, injection locking, phase noise, phase discriminator |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此論文提出了三項與振盪器有關的技術,應用於機體射頻系統,並且將這
些技術實踐於四個COMS晶片。
第一項是應用於駐波振盪器陣列的直接偶和技術:在振盪器陣列中,每個
單元的振盪電流經由共振腔,直接注入至相鄰的單元。此論文使用此技
術,呈現了兩個二維駐波振盪器陣列。第一個陣列可於晶片中多個位置,
提供相同頻率、振幅和相位的同步訊號,此陣列震盪頻率為61.5GHz,
使用90nm CMOS製程。為了透過無線量測驗證其同步性,同個一晶片
中整合了,包括二維駐波振盪器陣列、射頻驅動器陣列和環狀天線的毫米
波輻射器。透過無線量測得到1x1、2x2和3x3的有效全向輻射功率和相
位雜訊,並觀察其關係,可得到同步性的間接證據。在陣列法向方位的有
效全向輻射功率以10logN^2的倍數成長,並且相位雜訊以10logN的倍
數遞減,其中N代表陣列中的單元數量。第二個駐波振盪器陣列則可於晶
片中多個位置,提供相同頻率和振幅但多相位的同步訊號,此陣列震盪
基頻為312.5GHz,使用65nm CMOS製程,此陣列是設計用於二維兩倍
諧波(265GHz)的空間功率輻射與結合。
第二項技術實現於一個65nm CMOS太赫茲天線陣列接收器。此接收
器為一個兩次轉換差外插架構,第一次降頻由一個字鎮三倍諧波混
波器前端來完成,而第二次降頻則由一個Gilbert-cell混波器和本地
振盪器來達成,此接受器還與一個四單元的環狀天線陣列共同設計
和積體化。312GHz的射頻輸入訊與96.1GHz本地振盪器的三倍諧波
混頻,產生23.8GHz的第一個中頻,而第二個本地振盪器頻率為22.3
GHz,所以產生的第二個中頻為1.5 GHz。
在最後一個晶片中,呈現一個用於本地振盪器相位雜訊之射頻內建自我測
試平台的分析、設計和實踐。此平台中,一個注入鎖定振盪器相位鑑別器
與一個2.56GHz的鎖相迴路被整合於65nm CMOS製程。此射頻內建自我測試頻台所產生的相位雜訊量測結果,與信號源分析儀的量測結果
相比,在100kHz、1MHz和10MHz位移頻率的誤差分別為0.9 dB、1.2
dB和2.6 dB。
In this dissertation, three techniques in relation to oscillators are proposed for integrated RF system. Four chips are implemented in CMOS based these techniques.
First of all, a direct-coupled technique for standing wave oscillator (SWO) arrays is presented. The oscillation currents of a unit cell in the SWO array directly inject to adjacent cells through the resonator. Two 2-D SWO arrays based on the technique are reported. The first one can provide synchronous signals with identical frequencies, amplitudes, and phases at multiple locations over a chip. It is implemented in a 90-nm CMOS technology with 61.5-GHz oscillation frequency. Millimeter-wave radiators that consists of the proposed 2-D SWO array, an RF driver array, and an on-chip loop antenna array are implemented in a single chip to verify the synchronicity via wireless measurement. The indirect evidence of synchronicity is provided from the correlation between the wireless measured effective isotropic radiated power (EIRP) and phase noise of 1x1, 2x2, and 3x3 arrays. The EIRP in the normal direction of the array is increasing by a factor of 10logN^2 and the phase noise is reducing by a factor 10logN of over that of a single cell, where N is the number of unit cells in the array. The second SWO array can provide synchronous signals with identical frequencies, amplitudes, and multiple phases at multiple locations over a chip. It is implemented in a 65-nm CMOS technology with 132.5-GHz fundamental frequency. The SWO array is designed for 2-D second harmonic (265-GHz) spatial power radiating and combining.
The second technique is realized in a THz antenna array receiver in 65-nm CMOS. The receiver is a double-conversion superheterodyne architecture. The first down-conversion is accomplished by a self-oscillating 3X subharmonic mixer frontend, and the second down-conversion is performed by a Gilbert-cell mixer and a local oscillator. The receiver is co-designed and integrated with a 4-element loop antenna array. By mixing an RF input signal at 312 GHz with the third harmonic of the 96.1GHz LO, the first IF of 23.8 GHz is produced. The second LO is at frequency of 22.3 GHz,
and the second IF is 1.5 GHz.
An RF built-in self-test (BIST) bench on local oscillator phase noise is presented in the last work. An injection-locked-oscillator phase discriminator integrated with a 2.56-GHz phase-locked loop in a 65-nm CMOS technology is proposed in this bench. In comparison with a signal source
analyzer, the RF-BIST bench provides the phase noise profile with 0.9-dB, 1.2-dB, and 2.6-dB errors at 100-kHz, 1-MHz, and 10-MHz offset frequencies respectively.
[1] P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 3, pp. 910–928, Mar. 2002.
[2] H.-J. Song and T. Nagatsuma, “Present and future of terahertz communications,” IEEE Trans. Terahertz Sci. Technol., vol. 1, no. 1, pp. 256–263, Sep. 2011.
[3] B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett, vol. 20, no. 16, pp. 1716–1718, Aug. 1995.
[4] D. D. Arnone, C. M. Ciesla, A. Corchia, S. Egusa, M. Pepper, J. M. Chamberlain, C. Bezant, E. H. Linfield, R. Clothier, , and N. Khammo, “Applications of terahertz (THz) technology to medical imaging,” in Proc. SPIE Terahertz Spectroscopy Applicat. II, Sep. 1999, pp. 209–219.
[5] P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 10, pp. 2438–2447, Oct. 2004.
[6] D. J. Fout, “A gallium-arsenide digital phase shifter for clock and control signal distribution in high-speed digital systems,” IEEE J. Solid-State Circuits, vol. 27, no. 5, pp. 802–809, May 1992.
[7] P. Ramanathan, A. J. Dupont, and K. G. Shin, “Clock distribution in general VLSI circuits,” vol. 41, no. 5, pp. 395–404, May 1994.
[8] G. A. Pratt and J. Nguyen, “Distributed synchronous clocking,” IEEE Trans. Parallel Distrib. Syst., vol. 6, no. 3, pp. 314–328, Mar. 1995.
[9] G. Geannopoulos and X. Dai, “An adaptive digital deskewing circuit for clock distribution networks,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (ISSCC), Feb. 1998, pp. 400–401.
[10] E. G. Friedman, “Clock distribution networks in synchronous digital integrated circuits,” Proc. IEEE, vol. 89, pp. 665–692, May 2001.
[11] J. Wood, T. C. Edwards, and S. Lipa, “Rotary traveling-wave oscillator arrays: A new clock technology,” IEEE J. Solid-State Circuits, vol. 36, no. 11, pp. 1654–665, Nov. 2001.
[12] F. O’Mahony, C. P. Yue, M. A. Horowitz, and S. S. Wong, “A 10-GHz global clock distribution using coupled standing-wave oscillators,” IEEE J. Solid-State Circuits, vol. 38, no. 11, pp. 1813–1820, Nov. 2003.
[13] W. F. Andress and D. Ham, “Standing wave oscillators utilizing wave adaptive
tapered transmission lines,” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 638–651, Mar. 2005.
[14] D. Chung, C. Ryu, H. Kim, C. Lee, K. B. Jinhan Kim, J. Yu, H. Yoo, and J. Kim, “Chip-package hybrid clock distribution networkand dll for low jitter clock delivery,” IEEE J. Solid-State Circuits, vol. 41, no. 1, pp. 274– 286, Jan. 2006.
[15] J. W. Mink, “Quasi-optical power combining of solid-state millimeter-wave sources,” IEEE Trans. Microw. Theory Tech., vol. 34, no. 2, pp. 273–279, Feb. 1986.
[16] Z. B. Popovi´c, R. M. Weikle II, M. Kim, and D. B. Rutledge, “A 100-MESFET planar grid oscillator,” IEEE Trans. Microw. Theory Tech., pp. 193–200, Feb. 1991.
[17] A. Mortazawi, H. D. Foltz, and T. Itoh, “A periodic second harmonic spatial power combining oscillator,” IEEE Trans. Microw. Theory Tech., vol. 40, no. 5, pp. 851–856, May 1992.
[18] R. M. Weikle II, M. Kim, J. B. Hacker, M. P. De Lisio, and D. B. Rutledge, “Planar MESFET grid oscillators using gate feedback,” IEEE Trans. Microw. Theory Tech., vol. 40, no. 11, pp. 1997–2003, Nov. 1992.
[19] A. Balasubramaniyan and A. Mortazawi, “Two-dimensional MESFET-based spatial power combiners,” IEEE Microw. Guided Wave Lett., vol. 3, no. 10, pp. 366–368, Oct. 1993.
[20] T. Mader, S. Bundy, and Z. B. Popovi´c, “Quasi-optical VCOs,” IEEE Trans. Microw. Theory Tech., vol. 41, no. 10, pp. 1775–1781, Oct. 1993.
[21] J. Lin and T. Itoh, “Two-dimensional quasi-optical power-combining arrays using strongly coupled oscillators,” IEEE Trans. Microw. Theory Tech., vol. 42, no. 4, pp. 734–741, Apr. 1994.
[22] A. Mortazawi and B. C. De Loach, Jr., “Spatial power-combining oscillators based on an extended resonance technique,” IEEE Trans. Microw. Theory Tech., vol. 42, no. 12, pp. 2222–2228, Dec. 1994.
[23] S. C. Bundy and Z. B. Popovi´c, “A generalized analysis for grid oscillator design,” IEEE Trans. Microw. Theory Tech., vol. 42, no. 12, pp. 2486–2491, Dec. 1994.
[24] W. A. Shiroma, S. C. Bundy, S. Hollung, B. D. Bauernfeind, and Z. B. Popovi´c, “Cascaded active and passive quasi-optical grids,” IEEE Trans. Microw. Theory Tech., vol. 43, no. 12, pp. 2904–2909, Dec. 1995.
[25] Q. Sun, J. B. Horiuchi, S. R. Haynes, K. W. Miyashiro, and W. A. Shiroma, “Grid oscillators with selective-feedback mirrors,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 12, pp. 2324–2329, Dec. 1998.
[26] W. Wang and L. W. Pearson, “Frequency stabilization of power combining grid oscillator arrays,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 5, pp. 1400–1407, May 2002.
[27] O. Momeni and E. Afshari, “High power terahertz and sub-millimeter-wave oscillator design: A systematic approach,” IEEE J. Solid-State Circuits, vol. 46, no. 3, pp. 583–597, Mar. 2011.
[28] K. Sengupta and A. Hajimiri, “A 0.28 THz power-generation and beam-steering array in CMOS based on distributed active radiators,” IEEE J. Solid-State Circuits, vol. 47, no. 12, pp. 3013–3030, Dec. 2012.
[29] L. Divina and Z. Skvor, “The distributed oscillator at 4 GHz,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 12, pp. 2240–2243, Dec. 1998.
[30] H. Wu and A. Hajimiri, “Silicon-based distributed voltage-controlled oscillators,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 493–502, Mar. 2001.
[31] D. Ham and W. Andress, “A circular standing wave oscillator,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (ISSCC), Feb. 2004, pp. 380–533.
[32] Y.-J. Chen and T.-S. Chu, “2-D direct-coupled standing-wave oscillator arrays,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 12, pp. 4472–4482, Dec. 2013.
[33] Y.-J. Chen and T.-S. Chu, “A two-dimensional direct-coupled standing-wave oscillator array,” in IEEE MTT-S Int. Microw. Symp. Dig. (IMS), Jun. 2013, pp. 1–3.
[34] K. Kurokawa, “Injection locking of microwave solid-state oscillators,” Proc. IEEE, vol. 61, no. 10, pp. 1336–1410, Oct. 1973.
[35] R. Adler, “A study of locking phenomena in oscillators,” Proc. IRE, vol. 34, no. 6, pp. 351–357, Jun. 1946.
[36] B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1015–1026, Sep. 2004.
[37] H., “A note on a simple transmission formula,” Proc. IRE, vol. 34, no. 5, pp. 254–256, May 1946.
[38] H.-C. Chang, X. Cao, U. K. Mishra, and R. A. York, “Phase noise in coupled oscillators: Theory and experiment,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 5, pp. 604–615, May 1997.
[39] A. Goel and H. Hashemi, “Phase noise in a synchronized concurrent dual-frequency oscillator,” in IEEE Custom Intergr. Circuits Conf. (CICC), Sep. 2009, pp. 483–486.
[40] M. Hekmat, D. K. Su, and B. A. Wooley, “A quadrature LO generator using bidirectionally-coupled oscillators for 60-GHz applications,” in IEEE Custom Intergr. Circuits Conf. (CICC), Sep. 2011, pp. 19–21.
[41] K. Sengupta and A. Hajimiri, “A 0.28THz 4x4 power-generation and beam-steering array,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (ISSCC), Feb. 2012, pp. 256–258.
[42] J.-D. Park, S. Kang, and A. M. Niknejad, “A 0.38THz fully integrated transceiver utilizing quadrature push-push circuitry,” in IEEE Symp. VLSI Circuits, Jun. 2011, pp. 22–23.
[43] S. Lin, Y. Qian, and T. Itoh, “A quasi-optical sub-harmonic self-oscillating mixer,” in European Microw. Conf. (EuMC), Oct. 1988, pp. 412–414.
[44] M. J. Roberts, S. Iezekiel, and C. M. Snowden, “A W-band self-oscillating subharmonic MMIC mixer,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 12, pp. 2104–2108, Dec. 1988.
[45] Y. Yan, Y. B. Karandikar, S. E. Gunnarsson, and H. Zirath, “24 GHz balanced self-oscillating mixer with integrated patch antenna array,” in European Microw. Conf. (EuMC), Oct. 2011, pp. 404–407.
[46] Y.-J. Chen and T.-S. Chu, “A 312GHz antenna array receiver in 65nm CMOS utilizing self-oscillating 3X subharmonic mixer frontend,” in IEEE Radio Freq. Integr. Circuits Symp. (RFIC), May 2015, pp. 19–22.
[47] A. Goel and H. Hashemi, “Concurrent dual-frequency oscillators and phase-locked loops,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 8, p.1846–1860, Aug. 2008.
[48] A. Valdes-Garcia, W. Khalil, and B. B., Jose Silva-Martinez, and Edgar Sanchez-Sinencio, “Built-in self test of RF transceiver SoCs: from signal chain to RF synthesizers,” in IEEE Radio Freq. Integr. Circuits Symp. (RFIC), Jun. 2007, pp. 335–338.
[49] Y.-J. Chen and T.-S. Chu, “An injection-locked-oscillator phase discriminator for rf built-in self test on local oscillator phase noise,” in IEEE MTT-S Int. Microw. Symp. Dig. (IMS), Jun. 2014, pp. 1–4.
[50] W. Khalil, B. Bakkaloglu, and S. Kiaei, “A self-calibrated on-chip phase-noise measurement circuit with -75 dBc single-tone sensitivity at 100 kHz offset,” IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2758–2765, Dec. 2007.
[51] A. Imani and H. Hashemi, “A low-noise FBAR-CMOS frequency/phase
discriminator for phase noise measurement and cancellation,” in IEEE Radio Freq. Integr. Circuits Symp. (RFIC), Jun. 2013, pp. 431–434.
[52] A. Hajimiri and T. H. Lee, “A general theory of phase noises in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179–194, Feb. 1998.