簡易檢索 / 詳目顯示

研究生: 郭政倫
Cheng-Lun Kuo
論文名稱: 以磁控濺鍍法研製鐵鈷鉿基之軟磁薄膜及其微結構與磁性質分析
Microstructure and Magnetic Properties of Fe-Co-Hf Based Soft Magnetic Thin Films Fabricated by Magnetron Sputtering for Radio-Frequency Applications
指導教授: 杜正恭
Jenq-Gong Duh
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 78
中文關鍵詞: 鐵磁薄膜電感透磁率異向性
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 被動元件-電感,在整個電子元件的整合中,體積佔了很大的部份。如果以鐵磁薄膜來增加電感的磁通量,將能有效的增加電感的感值,進而縮小電感的尺寸。這將對3C產品的尺寸與重量縮減有助益。
    本實驗選用成分為Fe–Co–Hf基的鐵磁薄膜作為研究的材料。以RF-磁控濺度系統在N2與Ar的氣氛下並藉著控制槍(gun)的位置可以成功鍍製出有鉿(Hf)濃度梯度的Fe–Co–Hf–N薄膜。利用此濃度梯度的濺射,增加薄膜的內應力,進而增加磁場的異向性,使此薄膜能具有更高的操作頻率。此外,在調變O2與Ar的氣氛下,鍍製出非晶相的Fe–Co–Hf–O磁性薄膜,再經由熱處理使之形成奈米晶與非晶的混合相,增加薄膜的電阻值,進而降低渦電流損耗。
    此外,利用振動樣品磁力計(VSM)對薄膜作磁性質分析。在Fe–Co–Hf–N薄膜中,不同的鉿含量下,會有不同的磁性質表現。此薄膜磁具有高的磁場異向性(HK)約150 Oe與低的矯頑場(HC)約5 Oe。在高頻性質的表現上,其鐵磁共振頻率均超過3 GHz。另外, Fe–Co–Hf–O薄膜中,在成份Fe36.5Co17.2Hf9.8O36.5時,其飽和磁化量(MS)約為12 kG,矯頑場約0.8 Oe,且電阻值高達800 □□□cm,鐵磁共振頻率也能達到2.6 GHz。


    Soft magnetic thin films with high saturation magnetization and resistivity are of great interest in micro-inductor for the magnetic device application.
    In this study, amorphous Fe–Co–Hf–N thin films with a gradient concentration of Hf doping were fabricated by rf reactive magnetron sputtering. The evaluated magnetic properties and high-frequency characteristics were sensitive to the doping contents. A new technology was used to deposit a series Fe–Co–Hf–N thin films on which gradient concentration of Hf was present. By this new deposition technology, the films existed residual stress, and thus the stress-induced anisotropy field was enhanced. The as-deposited films without post annealing exhibited larger anisotropy field (Hk) of 150 Oe. In addition, coercivity (HC) of less than 5 Oe in both easy and hard axes, and electrical resistivity (ρ) of 500 μΩ-cm were obtained.
    In addition, nano-composite Fe–Co–Hf–O thin films were developed using dc reactive magnetron sputtering. The influence of oxygen content on the microstructure, high-frequency characteristics and magnetic properties was investigated. With the increase in oxygen content from 31 to 40 at%, the films exhibited high resistivity up to 2600 μΩ-cm. A minimum coercivity (HC) value of 0.8 Oe andρ= 800 μΩ-cm was obtained for the Fe36.5Co17.2Hf9.8O36.5 film with thickness around 1300 nm.
    The high frequency behavior of Fe–Co–Hf based films was also evaluated. The permeability measurement showed a permeability of Fe–Co–Hf–N films around 100 at 3 GHz and a ferromagnetic resonance frequency (fFMR) in excess of 3 GHz. In addition, the ferromagnetic resonance frequency of Fe–Co–Hf–O film was as high as 2.6 GHz, implying a high cut-off frequency. It is expected that the Fe–Co–Hf based films should be promising for practical applications as a high-frequency ferromagnetic material.

    Contents 0 List of Tables III Figure Caption IV Abstrate VII Chapter 1 Introduction 1 Chapter 2 Literature survey 5 2.1 Magnetic materials 5 2.1.1 Magnetic hysteresis 5 2.1.2 Magnetic anisotropy (HK) 6 2.1.3 Grain-size dependence of coercivity and permeability [19] 9 2.1.4 Magnetic domains 11 2.1.5 Magnetostriction 12 2.2 Application of soft magnetic thin films in inductor 12 2.2.1 Material requirements 13 2.2.2 Magnetic core materials 15 2.2.3 Amorphous soft magnetic materials 16 2.2.4 Nanocrystalline soft magnetic materials 17 2.2.5 Micro inductors designed with a magnetic thin film 18 Chapter 3 Experimental Procedure 28 3.1 Deposition Techniques 28 3.1.1 Fe–Co–Hf–N magnetic thin films 28 3.1.2 Fe–Co–Hf–O magnetic thin films 29 3.2 Measurements and Analysis 29 3.2.1 Composition analysis 29 3.2.2 Phase identification and microstructure investigation 29 3.2.3 Magnetic domain structure investigation 30 3.3.4 Evaluation of residual stress and magnetostriction 30 3.2.5 Measurement of magnetic properties 31 3.2.6 Permeability characterization 32 3.2.7 Resistivity measurement and thickness of films 32 Chapter 4 Results and Discussion 37 Part 1: Fe–Co–Hf–N Magnetic Thin Films 37 4.1.1 Composition and Microstructure Analysis of the Fe–Co–Hf–N 37 4.1.2 Electrical Resistivity Analysis of Fe–Co–Hf–N Magnetic Thin Films 37 4.1.3 Magnetic Properties and residual stress of Fe–Co–Hf–N thin films 38 4.1.4 High Frequency Behavior Evolution 39 4.1.5 Comparison of gradient deposition and non-gradient deposition 40 Part 2: Fe–Co–Hf–O Magnetic Thin Films 42 4.2.1 Composition and Microstructure Analysis of the Fe–Co–Hf–O Films 42 4.2.2 Electrical Resistivity Analysis of Fe–Co–Hf–O Magnetic Thin Films 43 4.2.3 Magnetic Properties of Fe–Co–Hf–O thin films 43 4.2.4 Magnetic anisotropy of Fe–Co–Hf–O thin films 45 4.2.5 Magnetic Domain Structure of the Fe–Co–Hf–O films 46 4.2.6 High Frequency Behavior Evolution 47 Chapter 5 Conclusions 73 References 74

    [1] M. Yamaguchi, K. Suezawa, K. I. Arai, et al. J. Appl. Phys. 85 (11), 7919 (1999).
    [2] T. Sato, E. Komai and K. Yamasawa, IEEE Trans. Magn. 33, 3310 (1997).
    [3] S. Chikazumi, Phys. Magne. 329, (1964).
    [4] I. Fergen, K. Seemann, A. V. D. Weth, and A. Schppuen, J. Magn. Magn. Mater. 242, 146 (2002).
    [5] K. Seemann, H. Leiste, and V. Bekker, J. Magn. Magn. Mater. 283, 310 (2004).
    [6] G. Rieger, G. Rupp, G. Gieres, and et al., J. Appl. Phys. 91, 8447, (2002).
    [7] M. Yamaguchi, Y. Miyazawa, K. Kaminish, and et al., J. Magn. Magn. Mater. 268, 170 (2004).
    [8] V. Korenivski, and R. B. Van Dover, IEEE Trans. Magn. 34, 1375 (1998).
    [9] V. Korenivski, J. Magn. Magn. Mater. 215,800 (2000).
    [10] N. X. Sun, and S. X. Wang, J. Appl. Phys. 92, 1477, (2002).
    [11] A. R. Chezan, C. B. Craus, N. G. Chechenin, and et al. Phys. Stat. Sol. (a), 189, 833 (2002).
    [12] T. J. Klemmer, K. A. Ellis, L. H. Chen, B. Van Dover, and S. Jin, J. Appl. Phys. 87, 830 (2000).
    [13] C. H. Lee, D. H. Shin, D. H. Ahn, and et al, J. Appl. Phys. 85, 4898 (1998).
    [14] L. H. Chen, H. K. Chen, C. T. Hsieh, and et al., J. Appl. Phys. 91, 8450 (2002).
    [15] X. L. Tang, H. W. Zhang, H. Su, and X. D. Jiang, J. Magn. Magn. Mater. 270, 84 (2004).
    [16] M. E. McHenry, M. A. Willard, and D. E. Laughlin, Pro. Mater. Sci. 44, 291 (1999).
    [17] K. Seemann, H. Leiste, and V. Bekker, J. Magn. Mag. Mater. 278 , 200 (2004).
    [18] B. Peng, W.L. Zhang, et al. J. Magn. Mag. Mater. 318, 14 (2007).
    [19] G. Herzer. IEEE Trans. Magn. 26, 1397 (1990).
    [20] Y. Hayakawa and A. Makino, nanostructured Mater. 6, 989 (1995).
    [21] Y. Liu, Z. W. Liu, C. Y. Tan, and C. K. Ong. J. Appl. Phys. 100, 093912 (2006).
    [22] S.D. Li, Z.R. Yuan, J.G. Duh, J. Phys. D: Appl. Phys. 41, 055004 (2008).
    [23] S.D. Li, Z.R. Yuan, J.G. Duh, J. Appl. Phys. Lett. 8, 92 (2008).
    [24] S. Chikazumi and S.H. Charap. Phy. Magn. Krieger Publishing Company, Malabar, Florida (1978).
    [25] B.D. Cullity. Introduction to Magnetic Materials, 2 nd Edition. Wiley-IEEE Press (2008).
    [26] G. Herzer, Scripta Metal1. Mater. 33, 1714 (1995),
    [27] K. Suzuki, G. Herzer, and et al. J. Magne. Magn. Mater. 177, 949 (1998).
    [28] G. Herzer, IEEE Trans. Magn. 25, 3327 (1989).
    [29] R. Albert, J.J. Becket and M.C. Chi, J. Appl. Phys. 49, 1653 (1978).
    [30] R. M. Bozorth, Ferromagnetism, Princeton, N. J. D. Van Nostrand, ch. 18, 811-837 (1951).
    [31] Michael Farle, Rep. Prog. Phys. 61, 755 (1998).
    [32] N. Saito, H. Fuliwara, J. Phys. Soc. Jpn. 19, 1116 (1964).
    [33] O. Acher, et al. J. Appl. Phys. 81, 8 (1997).
    [34] P. Marin and A. Hernando, J. Magne. Magn. Mater. 215 (2000).
    [35] S. Jin, W. Zhu, R.B. vanDover, T.H. Tiefel, and V. Korenivski, Appl. Phys. Lett. 70, 3161 (1997).
    [36] Alex Van den Bossche and Vencislav Cekov Valchev, Taylor & Francis, ch. 3 (2005).
    [37] V. Bekker, K. Seemann, and H. Leiste, J. Magne. Magn. Mater. 296, 37 (2006).
    [38] Y. Yoshizawa, S. Oguma, and K. Yamauchi, J. Appl. Phys. 64, 6044 (1988).
    [39] C. H. Ahn and M. G. Allen, IEEE Trans. Ind. Electron. 45, 876 (1998).
    [40] W. A. Roshem and D. E. Turcotte, IEEE Trans. Magn. 24, 3213 (1988).
    [41] W. A. Roshem, IEEE Trans. Magn. 26, 270 (1990).
    [42] J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, C. Fiori, E. lifshin, Scanning Electron Microscopy and X-ray Microanalysis, plenum Press (1981).
    [43] G. G. Stoney, Proc. R. Soc. London, Ser. A. 82, 172 (1909).
    [44] J. Betz, E. du Tre´molet de Lacheisserie, and L. T. Baczewski, Appl. Phys. Lett. 68, 1 (1996).
    [45] E. du Tre´molet de Lacheisserie, and J. C. Peuzin, J. Magn. Magn. Mater. 136, 189 (1994).
    [46] M. Yamaguchi, O. Acher, Y. Miyazawa, K. I. Arai, and M. Ledieu, J. Magn. Magn. Mater. 242, 970 (2002).
    [47] D. Pain, M. Ledieu, O. Acher, A. L. Adenot, and F. Uverger, J. Appl. Phys. 85, 5151 (1999).
    [48] C.Y. Li, J.G. Duh, Appl. Surf. Sci. 244, 477 (2005).
    [49] K.H. Kim, Y.H. Kim, S.H. Han, H.J. Kim, J. Magn. Magn. Mater. 215, 368–371 (2000).
    [50] S. E. Rissek, P. Kabos, T. Silva, F. B. Mancoff, and et al. IEEE Trans. Magn. 37, 2248 (2001).
    [51] L. Li, A. M. Crawford, S. X. Wang, and A. F. Marshall, J. Appl. Phys. 97, 10F907 (2005).
    [52] S. H. Ge, D. S. Yao, M. Yamaguchi, et al. J. Phys. D: Appl. Phys. 40, 3660 (2007).
    [53] H. Chiriac, M. Pletea, E. Hristoforou, Sens. Act. 81, 166 (2000).
    [54] P. Zou, W. Yu, and J. A. Bain, IEEE Trans. Magn. 38, 3501 (2002).
    [55] R. F. Jiang, and C. H. Lai, J. Appl. Phys. 97, 10N302 (2005).
    [56] N. D. Ha, M. H. Phan, and C. O. Kim, Nanotechnology, 18, 155705 (2007).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE