簡易檢索 / 詳目顯示

研究生: 張基順
論文名稱: 以不同碳鏈長度之聚酸酐共聚物製成骨修復材料之探討
Bone healing materials by using the polyanhydride copolymer of different carbonyl chain length
指導教授: 朱一民
口試委員: 孫一明
張榮語
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 69
中文關鍵詞: 聚酸酐骨修復材料結晶降解
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 表面降解特性之生物可降解材料由於降解過程中仍可保持一定的機械強度,因此具有應用於骨修復材料上的潛力,其中聚酸酐即為表面降解特性之生物可降解材料。本研究利用脂肪族單體Sebacic acid (SA)和不同碳鏈數的芳香族單體1,3-bis(p-carboxyphenoxy)propane (CPP)、 1,6-bis(p-carboxyphenoxy)hexane (CPH)與1,8-bis(p-carboxyphenoxy)octane (CPO)共聚合形成聚酸酐高分子,並添加以polycaprolactone (PCL)表面改質後的陶瓷材料hydroxyapatite (HAP),即g-HAP來增強高分子共聚物的性質,期望能符合應用骨修復替代材料之需求。
    當共聚物單體碳鏈原子數相同時有利結晶,從XRD分析顯示出CPO-SA之結晶度相當高,可達到50.46%。而在28天降解實驗中質量損失百分比為CPO-SA>CPP-SA>CPH-SA,且添加g-HAP會因共聚物結晶度下降而增加損失速率;此外在機械強度方面CPO-SA組別及CPH-SA混摻20% g-HAP之機械強度損失較緩慢,在28天降解後可維持60%以上之壓縮強度,因此預期CPO-SA群組以及CPH-SA混摻g-HAP之複合材料在骨修復材料的應用具有良好潛力。


    摘要 I Abstract II 目錄 III 表目錄 V 圖目錄 VI 第一章、文獻回顧 1 1.1 骨組織及種類 1 2.1 生醫材料簡介 2 2.2 生物可降解高分子 4 2.2.1高分子降解與降解類型 5 2.3 聚酯高分子 7 2.3.1 聚酯/聚氫氧基酸 7 2.3.2 聚酯/聚羥基脂肪酸酯 9 2.3.3 聚酯/聚丙烯富馬酸 10 2.4 聚酸酐高分子 11 2.4.1 聚酸酐合成方式與降解 14 2.4.2 聚酸酐於骨修復上應用 19 2.5 氫氧基磷灰石HAP 20 2.6 混摻氫氧基磷灰石成高分子複合材料 21 第二章、研究動機與目的 25 第三章、實驗方法 27 3.1 實驗流程 27 3.2 實驗藥品 29 3.3 實驗儀器 30 3.4 實驗步驟 31 3.4.1合成單體CPP、CPH、CPO 31 3.4.2溶液聚合共聚物CPP-SA、CPH-SA、CPO-SA 34 3.4.3表面改質g-HAP 37 3.4.4製作錠劑 38 3.4.5降解測試 38 3.4.6材料性質鑑定 38 第四章、結果與討論 41 4.1合成單體與共聚物鑑定 41 4.1.1單體1H-NMR分析 41 4.1.2共聚物1H-NMR、GPC及FT-IR 43 4.2共聚物結晶性質 48 4.3表面改質g-HAP鑑定 50 4.4錠劑性質分析 53 4.4.1共聚物與複合材料錠劑熱性質 53 4.4.2錠劑降解測試之pH變化 55 4.4.3錠劑降解測試之質量損失 57 4.4.4錠劑降解測試之機械強度 60 第五章、結論與未來實驗方向 63 第六章、參考文獻 65

    1. Athanasiou, K. A.; Zhu, C. F.; Lanctot, D. R.; Agrawal, C. M.; Wang, X. “Fundamentals of Biomechanics in Tissue Engineering of Bone.” Tissue Engineering 2000, 6, 361.

    2. Razak, S. I. A.; Sharif, N. F. A.; Rahman, W. A. W. A. “Biodegradable polymers and their bone applications: A review.” International Journal of Basic & Applied Sciences 2012, 12, 31.

    3. Yaszemski, M. J.; Payne, R. G.; Hayes W. C.; Langer, R.; Mikos, A. G. “Evolution of bone transplantation:molecular, cellular and tissue strategies to engineer human bone.” Biomaterials 1996, 17, 175.

    4. http://www.nbic.org.tw/ckfinder/userfiles/files/PDF/20051124.pdf
    經濟部生醫材料技術與產業發展現況

    5. Mohanty, A. K.; Misra, M.; Hinrichsen, G. “Biofibres, biodegradable polymers and biocomposites: an overview.” Macromolecular materials and engineering 2000, 276–277, 1.

    6. Dunn, A. S.; Campbell, P. G.; Marra, K. G. “The influence of polymer blend composition on the degradation of polymer/hydroxyapatite biomaterials.” Journal of Materials Science:Materials in Medicine 2001, 12, 673.

    7. Heidemann, W.; Jeschkeit, S.; Ruffieux, K.; Fischer, J. H.;Wagner M.; Kruger, G.; Wintermantel, E.; Gerlach, K. L. “Degradation of poly(D,L)lactide implants with or without addition of calcium phosphates in vivo.” Biomaterials 2001, 22, 2371.

    8. Go¨pferich, A.; Tessmar, J. “Polyanhydride degradation and erosion.” Advanced Drug Delivery Reviews 2002, 54, 911.

    9. Shastri, V. P.; Zelikin, A.; Hildgen, P. “Synthesis of synthetic polymers:poly(anhydrides).” In: Atala ALR, editor. Methods of tissue engineering. California: Academic Press; 2002, p. 609–17.

    10. Sabir, M. I.; Xu, X.; Li, L. “A review on biodegradable polymeric materials for bone tissue engineering applications.” Journal of Materials Science 2009, 44, 5713.

    11. Vert, M.; Mauduit, J.; Li, S. “Biodegradation of PLA/GA polymers:increasing complexity.” Biomaterials 1994, 15, 1209.

    12. Martin, C.; Winet, H.; Baot, J. Y. “Acidity near eroding polylactide-polyglycolide in vitro and in vivo in rabbit tibia1 bone chambers.” Biomaterials 1996, 17, 2373.

    13. Maurus, P. B.; Kaeding, C. C. “Bioabsorbable implant material review.” Operative Techniques in Sports Medicine 2004, 12, 158.

    14. Gunatillake, P.; Mayadunne, R.; Adhikari, R. “Recent developments in biodegradable synthetic polymers.” Biotechnology Annual Review 2006, 12, 301.

    15. Porter, J. R.; Henson, A.; Popat, K. C. “Biodegradable poly(ε-caprolactone) nanowires for bone tissue engineering applications.” Biomaterials 2009, 30, 780.

    16. Yang, S.; Leong, K. F.; M.S.M.E., Du, Z.; Chua, C. K. “The Design of Scaffolds for Use in Tissue Engineering.Part I. Traditional Factors.” Tissue Engineering 2001, 7, 679.

    17. Zhao, K.; Deng, Y.; Chen, G. Q. “Effects of surface morphology on the biocompatibility of polyhydroxyalkanoates.” Biochemical Engineering Journal 2003, 16, 115.

    18. Nair, L. S.; Laurencin, C. T. “Polymers as biomaterials for tissue engineering and controlled drug delivery.” Advances in Biochemical Engineering-Biotechnology 2006, 102, 47.

    19. Kumara , N.; Langerb, R. S.; Domb, A. J. “Polyanhydrides: an overview.” Advanced Drug Delivery Reviews 2002, 54, 889.

    20. Bucher, J. E.; Slade, W. C. “The anhydrides of isophthalic and terephthalic acids. ” Jornal of the American Chemical Society 1909, 31, 1319.

    21. Hill, J. W.; Carothers, W. H. “Studies of polymerization and ring formation. XIII.Polyamides and mixed polyester-polyamides. ” Jornal of the American Chemical Society 1932, 54, 1569.

    22. Hill, J. W.; Carothers, W. H. “Studies of polymerization and ring formation. XIX.Many-Membered cyclic anhydrides.” Jornal of the American Chemical Society 1933, 55, 5023.

    23. Conix, A. “Aromatic polyanhydrides, a new class of high melting fiber-forming polymers.” Journal of Polymer Science 1958, 29, 343.

    24. Conix, A. “Vorläufige Mitteilung: New high-melting fibre-forming polymers.” Macromolecular Chemistry and Physics 1957, 24, 76.

    25. Yoda, N. “Syntheses of polyanhydrides. XII. Crystalline and high melting polyamidepolyanhydride of methylenebis(p-carboxyphenyl)amide.” Journal of Polymer Science Part A: General Papers 1963, 1, 1323.

    26. Domb, A. J.; Langer, R. US Pat. 1988, 4, 789, 724.

    27. Domb, A. J.; Amselem, S.; Shah, J.; Maniar, M. “Polyanhydrides: synthesis and characterization.” Advances in Polymer Science 1993, 107, 93.

    28. Domb, A. J.; Langer, R. “Polyanhydrides. I. Preparation of high molecular weight polyanhydrides.” Journal of Polymer Science Part A:Polymer Chemistry 1987, 25, 3373.

    29. Domb, A. J.; Langer, R. “Solid-state and Solution Stability of Poly(anhydrides) and Poly(esters).” Macromolecules 1989, 22, 2117.

    30. Emanuele, A. D.; Hill, J.; Tamada, J. A.; Domb, A. J.; Langer, R. “Molecular weight changes in polymer erosion. ” Pharmaceutical Research 1992, 9, 1279.

    31. Leong, K. W.; Brott, B. C.; Langer, R. “Bioerodible polyanhydrides as drug-carrier matrices. I: Characterization, degradation, and release characteristics.” Journal of Biomedical Materials Research 1985, 19, 941.

    32. McCann, D. L.; Heatley, F.; D’Emanuele, A. “Characterization of chemical structure and morphology of eroding polyanhydride copolymers by liquid-state and solid-state 1H NMR.” Polymer 1998, 40, 2151.

    33. Rezwan, K.; Chen, Q. Z.; Blaker, J. J.; Boccaccini, A. R. “Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering.” Biomaterials 2006, 27, 3413.

    34. Uhrich, K. E.; Gupta, A.; Thomas, T. T.; Laurencin, C. T.; Langer, R. “Synthesis and Characterization of Degradable Poly(anhydride-co-imides).” Macromolecules 1995, 28, 2184.

    35. Ibim, S. M.; Uhrich, K. E.; Bronson, R.; El-Amin, S. F.; Langer,R. S.; Laurencin, C. T. “Poly(anhydride-co-imides):in vivo biocompatibility in a rat model.” Biomaterials 1998, 19, 951.

    36. LeGeros, R. Z.; LeGeros, J. P. “Calcium phosphate ceramics: pas, present and future.” Bioceramics, vol.15, Proceedings of the 15th international symposium on ceramics in medicine, Sydney, 2002. p. 3–10.

    37. Knowles, J. C. “A review article: phosphate glasses for biomedical applications.” Journal of Materials Chemistry 2003, 13, 2395.

    38. Hammerle, C. H. F.; Olah, A. J.; Schid, J.; Fluckiger, L.; Gogolewski, S.; Winkler, J. R.; Lang, N. P. “The biological effect of natural bone mineral on bone neoformation on the rabbit skull.” Clinical Oral Implants Research 1997, 8, 198.

    39. Denissen, H. W.; deGroot, K.; Kakkes, P.; van den Hooff, A.; Klopper, P. J. “Tissue response to dense apatite implants in rats.” Journal of Biomedical Materials Research 1980, 14, 713.

    40. Chen, B.; Sun, K. “Poly(ε-caprolactone)/hydroxyapatite composites: effects of particle size, molecular weight distribution and irradiation on interfacial interaction and properties. ” Polymer Testing 2005, 24, 64.

    41. Zhang, P.; Hong, Z.; Yu, T.; Chen, X.; Jing, X. “In vivo mineralization and osteogenesis of nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with poly(L-lactide).” Biomaterials 2009, 30, 58.

    42. Wang, Y.; Dai, J.; Zhang, Q.; Xiao, Y.; Lang, M. “Improved mechanical properties of hydroxyapatite/poly(ε-caprolactone) scaffolds by surface modification of hydroxyapatite.” Applied Surface Science 2010, 256, 6107.

    43. Schwarz, G.; Kricheldorf, H. R. “New Polymer Synthesis. IXXXIII. Synthesis of Chiral and Cholesteric Polyesters f rorn Silylated “Sugar Diols”.” Journal of Polymer Science Part A: Polymer Chemistry 1996, 34, 603.

    44. Leong, K. W.; Simonte, V.; Langer, R. “Synthesis of Polyanhydrides: Melt-Polycondensation,Dehydrochlorination, and Dehydrative Coupling.” Macromolecules 1987, 20, 705.

    45. Mathiowitz, E., Ron, E.; Mathiowitz, G.; Amato, C.; Langer, R.“Morphological Characterization of Bioerodible Polymers. 1.Crystallinity of Polyanhydride Copolymers.” Macromolecules 1990, 23, 3212.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE