研究生: |
傅俊中 Chun-Chong Fu |
---|---|
論文名稱: |
塔式生化反應器之混合分析及其應用 Analysis of Mixing Performance and Application for Tower Type Bioreactors |
指導教授: |
吳文騰
Wen-Teng Wu 呂世源 Shih-Yuan Lu |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 127 |
中文關鍵詞: | 混合 、氣泡塔 、氣舉式反應器 、網狀內管氣舉式反應器 、奇異值分解法 、特徵值 、麴酸 、最慢模態 |
外文關鍵詞: | mixing, bubble column reactor, airlift reactor, airlift reactor with a net draft tube, singular value decomposition, eigenvalue, kojic acid, slow mode |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
混合時間是評定塔式生化反應器混合效果的一項重要指標。混合時間越短,反應器的混合效能越佳,系統越快達到混合均勻的平衡狀態。為有效掌握塔式反應器的混合過程,本研究提出一改善型巨觀混合模型(modified macromixing model),分別從反應器內管的設計與選擇較佳進料位置的角度,來討論提昇塔式生化反應器混合效益的原理與方法。反應器內管的設計方面是以模型的最慢模態特徵值(slow mode eigenvalue)以及混合時間,作為檢視塔式生化反應器混合成效的標的。本研究成功地以模型的最慢模態特徵值與非對稱進料實驗,證明出網狀內管氣舉式反應器(airlift reactor with a net draft tube)在混合效益上優於氣舉式反應器(airlift reactor)與氣泡塔反應器(bubble column reactor)的理由。最慢模態特徵值的分析結果說明:在相同的單位體積流率下,相較於其他兩款反應器,網狀內管氣舉式反應器有最小的最慢模態特徵值。對於提升混合效益的實驗結果具體說明:網狀內管反應器較其他兩款塔式生化反應器有優越的軸向、徑向流量分配比。於選擇較佳進料位置的研究上:本研究提出一個最適化初始進料演算法與進料操作模式,以期在要求之時限內,達到系統內各處混合均勻的結果。此研究是根據改善型巨觀混合模型的解析解,應用奇異值分解演算法,反推本模型的最適化初始進料條件。以給定的時限作為限制條件,估算出最少進料口數量,計算對應的進料位置與各進料位置的最佳進料量,於要求時限內達成混合的要求。研究結果可得知,一般所採行的塔頂進料方式,是較差的進料位置。也驗證出多口進料方式,確實有提升混合效益的成果;比較最差與最佳的例子,其所需的混合時間差異高達三倍。進一步利用塔式生化反應器來進行米麴黴菌(Aspergillus oryzae)發酵生產麴酸的應用。實驗證明,氣泡塔與攪拌槽反應器在相同的培養條件下,能產出幾乎等量的麴酸;在同樣的通氣成本下,比較氣泡塔與網狀內管反應器的產酸效能,因網狀內管氣舉式反應器有較氣泡塔為佳的氧氣質傳係數,所以有較高的溶氧量,同時反應在麴酸7天的產量約為27克/升,高於氣泡塔反應器的20克/升之具體成果上。
A modified network-of-zones model was developed to investigate the mixing performance of the three tower-type bioreactors; airlift, bubble column and airlift with a net draft tube. A key parameter b, that characteristic of the interaction intensity between the neighboring uprising and down-coming streams, which played a decisive role in determining the mixing performance of the three reactors was identified. The concentration dynamics and mixing behavior of the reactors were studied with a maximum non-zero eigenvalue analysis (the slow mode analysis). The model predictions were validated against results from mixing experiments using heat pulse. The model prediction and the experimental results were in good agreement. The model revealed a superior mixing performance for the airlift reactor with a net draft tube when compared to the airlift and bubble column reactors and can be linked to an optimum mass transfer between the neighboring uprising and down-coming streams, provided by the net draft tube.
This optimum mass transfer was a direct result of the balanced flow distribution in the axial and radial directions. In the tower type reactors, poor mixing is an important issue when applied to aerobic fermentation processes. As an attempt to enhance the mixing efficiency, an algorithm based on the analytic solution of the modified network-of-zones model and the application of singular value decomposition was proposed to determine the optimal feeding locations and the corresponding amount of feed in the three tower type bioreactors. Feeding locations and the corresponding feed amount predicted by the algorithm were in good agreement with the experimental results. The proposed efficient algorithm can be applied for optimizing the nutrient feeding to the three tower type reactors for improving the mixing efficiency that will result in higher productivities.
In another study, kojic acid was produced in the two tower-type reactors, bubble column reactor and airlift reactor with a net draft tube, by using a mutated strain of Aspergillus oryzae under aerobic conditions. The kojic acid production after 7 days and at an airflow rate of 6 LPM, in the airlift reactor with a net draft tube was higher (27g/L) than that in the bubble column reactor (20g/L). This was due to the higher oxygen transfer capacity of the airlift reactor with a net draft tube. Airlift reactor with a net draft tube can be applied for the large-scale production of kojic acid, yielding productivity comparable with stirred tank fermentation and at lower production costs.
參考文獻
Ariff, A.B., Salleh, M.S., Ghani, B. Hassan, M.A., Rusul, G. & Karim, M.I. A., (1996). Aeration and yeast extract requirements for kojic acid production by Aspergillus flavus link. Enzyme and Microbial Technology, 19, 545-550
Bailey, J.E. (1980), Biochemical reaction engineering and biochemical reactors. Chemical Engineering Science, 35, 1854-1886
Balaz, S., Uher, M., Brtko, J., Veverka, M., Bransova, J., Dobias, J., Podova, M. & Buchvald, J.,(1993) Relationship between antifungal activity and hydrophobicity of kojic acid derivatives. Folia Microbiol, 38, 387-391.
Beelik, A., (1956). Kojic acid. Advances in Carbohydrate Chemistry, 48, 145-183.
Bentley R., (1957). Preparation and analysis of kojic acid. Method in Enzymology, 3, 238-241
Brauer, H., (1985) Stirred Vessel Reactors, Biotechnology, 2, 395-444
Briganti, S., Camera, E. & Picardo, M. (2003) Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell Research, 16, 101-110.
Burdock, G.A., Soni, M.G. & Carabin I.G., (2001) Evaluation of health aspects of kojic acid in food. Regulatory Toxicology and Pharmacology, 33, 80-101.
Cheng, H.P., Wang, P.M., Chen, J.W. & Wu, W.T., (2002). Cultivation of Acetobacter xylinum for bacterial cellulose production in a modified airlift reactor, Biotechnology Apply Biochemical, 35, 125-132
Chisti M.Y. (1989) Airlift bioreactors (1 st ed) Elsevier Science Publisher, N.Y., U.S.A.
Degaleesan S., Roy S., Kumar S.B. & Dudukovic M.P., (1996). Liquid mixing based on convection and turbulent dispersion in bubble columns. Chemical Engineering Science, 51(10), 1967-1976.
Delnoij E., Kuipers J.A.M. & van Swaaij W.P.M., (1997). Computational fluid dynamics applied to gas-liquid contactors. Chemical Engineering Science, 52, 3623-3638.
Dhaouadi H., Poncin S., Hornut J.M. Wild G.., & Oinas P., (1996). Hydrodynamics of an airlift reactor: experiments and modeling. Chemical Engineering Science, 51, 2625-2630.
Fu, C.C., Lu, S.Y., Hsu, Y.J., Chen G.C. & Lin, Y.R., (2004). Superior Mixing Performance for Airlift Reactor with a Net Draft Tube, Chemical Engineering Science, 59, 3021-3028.
Fu, C.C., Wu, W.T. & Lu, S.Y. (2003). Performance of airlift bioreactors with net draft tube. Enzyme and Microbial Technology, 33, 333-342.
Futamura, T., Okabe, M., Tamura, T. Toda, K., Matsunobu, T. & Park, Y.S., (2001). Improvement of production of kojic acid by a mutant strain Aspergillus oryzae, MK 107-39. Journal of Bioscience and Bioengineering, 91, 273-276.
Futamura, T., Ishihara, H., Tamura, T., Yasutake, T., Huang, G., Kojima, M. & Okabe, M., (2001). Kojic acid production in an airlift bioreactor using partially hydrolyzed raw corn starch. Journal of Bioscience and Bioengineering, 92, 360-365.
Hsiun, D.Y. & Wu, W.T., (1995). Mass transfer and liquid mixing in an airlift reactor with a net draft tube, Bioprocess Engineering, 12, 221-225
Jong, J.Z., Hsiun, D.Y., Wu, W.T. & Tzeng, Y.M., (1995). Fed-batch culture of Bacillus thuringiensis for thuringiensin production in a tower type bioreactor, Biotechnology and Bioengineering, 48, 207-213
Joshi J.B., & Sharma M.M., (1979). A circulation model for bubble columns. Transactions of the Institute of Chemical Engineers, 57(1), 244-251.
Kanai T., Ichikawa J., Yoshikawa H. & Kawase Y., (2000). Dynamic modeling and simulation of continuous airlift bioreactor. Bioprocess Engineering, 23, 213-220.
Kang, Y., Gan, L.T., Min, G.T. & Kim, S.D., (1991) Promotion of oxygen transfer in three-phase fluidized-bed bioreactors by floating bubble breakers. Biotechnology and Bioengineering, 37, 580-586
Kang, Y., Min, B.T., Nah, J.B. & Kim, S.D., (1990). Mass transfer in continuous bubble columns with floating bubble breakers, American Institute of Chemical Engineers Journal, 36, 1255-1258
Kawase, Y., & Moo-Young, M., (1987). Influence of very small bubbles on kLa measurement in viscous microbial culture. Biotechnology and Bioengineering, 30, 345-347.
Khare, A.S., & Niranjan, K. (1995). Impeller-agitated aerobic reactor: the influence of tiny bubbles on gas hold-up and mass transfer in highly viscous liquids. Chemical Engineering Science, 50, 1091-1105.
Korpijarvi J., Oinas P., & Reunanen J., (1999). Hydrodynamics and mass transfer in an airlift reactor. Chemical Engineering Science, 54(13-14), 2255-2262.
Kubota, H., Hosono, Y. & Kujie, K.,(1978) Characteristic evaluations of ICI air-lift type deep shaft aerator. Journal of Chemical Engineering Japan, 11, 319-325.
Lee, James M. (1992) Biochemical Engineering (1st ed.). Prentice-Hall, Inc Englewood Cliffs, New Jersey
Mann R., (1986). Gas-liquid stirred vessel mixers: towards a unified theory based on network of zones. Transactions of the Institution of Chemical Engineers, 64 23-34.
Mann R., Williams R.A., Dyakowski T., Dickin F.J. & Edwards R.B., (1997). Development of mixing model using electrical resistance tomography. Chemical Engineering Science, 52, 2073-2085.
Marwaha, S.S., Kaur, J. & Sodhi, G.S., (1994) Organomercury(II) complexes of kojic acid and maltol: synthesis, characterization, and biological studies. Journal of Inorganic Biochemistry, 54, 67-74.
McNeil, B. & Harvey, L.M., (1990). Fermentation: a practical approach, Oxford University Press, Oxford. England.
Merchuk, J.C. & Yunger, R., (1990). The role of the gas-liquid separator of airlift reactors in the mixing process. Chemical Engineering Science, 45, 2973-2975.
Mohamad, R., Ariff, A.B., Hassan, M.A., Karim, M.I.A., Shimizu, H. & Shioya, S., (2002). Importance of carbon source feeding and pH control strategies for maximum kojic acid production from sago starch by Aspergillus flavus. Journal of Bioscience and Bioengineering, 94(2), 99-105.
Muller, F.L., & Davidson, J.F. (1992). On the contribution of small bubbles to mass transfer in bubble columns containing highly viscous liquid. Chemical Engineering Science, 47, 3525-3532.
Noble, B. & Daniel, J.W. (1977) Applied Linear Algebra, 2nd edition, Prentice-Hall Inc., Englewood Cliffs, N.J., U.S.A.
Novotny, L., Rauko, P., Abdel-Hamid, M. & Vachalkova, A., (1999), Kojic acid - a new leading molecule for a preparation of compounds with an anti-neoplastic potential. Neoplasma 46 89-92.
Pandit, A.B., & Joshi, J.B., (1983) Mixing in mechanically agitated gas-liquid contactors, bubble columns and modified bubble columns. Chemical Engineering Science , 38, 1189-1215
Rosfarizan, M. & Ariff, A.B., (2000). Kinetics of kojic acid fermentation by Aspergillus flavus using different types and concentration of carbon and nitrogen sources. Journal of industrial Microbiology & Biotechnology, 25, 20-24
Scragg, A.H., (1988). Biotechnology for engineers: biological system in technological processes, Ellis Horwood Limited, Chichester, England.
Shah, Y.T., Kelkar, B.G., Godbole, S.P. & Deckwer, W.D., (1982) Design parameters estimations for bubble column reactors. American Institute of Chemical Engineer Journal. (28), 353-379.
Shuler, M.L. & Kargi, F., (1992) Bioprocess Engineering: Basic concepts, Prentice-Hall Inc.
Stanbury, P. F. & Whitaker, A. (1984) Principles of fermentation technology, Progamon Press Ltd., Headington Hill Hall Oxford, England.
Todt J., Lucke J., Schugeral K. & Renken A., (1977). Gas holdup and longitudinal dispersion in different types of multiphase reactors and their possible application for microbial process. Chemical Engineering Science, 32, 369-375.
Tung, H.L., Chang, Y.Y., Hwang, T.K. & Wu, W.T., (1998). Liquid mixing and mass transfer in a modified bubble column with suspended particles. Journal of the Chinese Institute of Chemical Engineers, 29, 467-472
Tung, H.L., Chiou, S.Y., Tu, C.C. & Wu, W.T., (1997). An airlift reactor with double net draft tubes and its application in fermentation, Bioprocess Engineering, 17, 1-5.
Tung, H.L., Tu, C.C., Chang, Y.Y. & Wu, W.T.,(1998). Bubble characteristics and mass transfer in an airlift reactor with multiple net draft tubes, Bioprocess Engineering, 18, 323-328
Tzeng, Y.M. & Liu, B.L., (2000). Characterization study on the sporulation kinetics of Bacillus thuringiensis. Biotechnology and Bioengineering, 68, 11-17.
Ulbrecht, J.J., Kawase, Y. & Auyeung, K.F., (1985) More on mixing of viscous liquids in bubble columns. Chemical Engineering Communication, 35, 175-191.
Wang, D.I.C., Cooney, C.L., Demain, A.L., Dunnill, P., Humphrey, A.E. & Lilly, M.D., (1979) Fermentation and Enzyme technology, John Wiley & Sons, Inc., Canada.
Wu, J.Y. & Wu, W.T., (1991). Fed-batch culture of Saccharomyces cerevisiae in an airlift reactor with net draft tube, Biotechnology Progress, 7, 230-233
Wu, J.Y. & Wu, W.T., (1992), Glutamic acid production in an airlift reactor with net draft tube, Bioprocess Engineering, 8, 183-187.
Wu, W.T., Huang, T.K., Wang, P.M. & Chen J.W. (2001) Cultivation of Absidia coerulea for chitosan production in a modified airlift reactor, Journal of Chinese Institute Chemical Engineers, 35, 235-240.
Wu, W.T., Wang, P.M., Chang, Y.Y., Huang, T.K. & Chien, Y.H. (2000) Suspended rice particles for cultivation of Monascus purpureus in a tower-type bioreactor, Apply Microbiology Biotechnology, 53, 543-544.
Wu, W.T. & Wu, J.Y., (1990). Airlift reactor with net draught tube. Journal of Fermentation and Bioengineering, 70, 359-361.
Wu, W.T., Wu, J.Y. & Jong, J.Z., (1992). Mass transfer in an airlift reactor with a net draft tube. Biotechnology Progress, 8, 465-468.
Zahradnik J., Mann R., Fialova M., Vlaev D., Vlaev S.D., Lossev V., & Seichter P., (2001). A networks-of-zones analysis of mixing and mass transfer in three industrial bioreactors. Chemical Engineering Science, 56, 485-492.
尤新 & 潘子明,(2001). 機能性醱酵製品 藝軒圖書出版社
仝漢霖, (1998). 雙網狀導管氣舉式反應器的設計及其在盤尼西林發酵上的應用. 清華大學化學工程學系 博士論文
吳文騰,傅俊中,呂世源, (2003) 網狀內管氣舉式生化反應器 興大工程學刊, 14卷, 77-86
陳建強, (2004). 以改良之米麴黴菌進行麴酸生產的研究 清華大學化學工程學系 碩士論文
萬曉明, (2004). 利用米麴菌進行麴酸生產的開發 清華大學化學工程學系 博士論文