研究生: |
陳俊光 Chen, Chun-Kuang |
---|---|
論文名稱: |
使用拍頻干擾消除接收端設計之光學正交分頻多工系統 Receiver Design by Using Beat Interference Cancellation in an Optical OFDM System |
指導教授: |
馮開明
Feng, Kai Ming |
口試委員: |
林恭如
Lin, Gong-Ru 彭朋群 Peng, Peng-Chun |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 59 |
中文關鍵詞: | 光學正交分頻多工 、拍頻干擾消除 |
外文關鍵詞: | Beat Interference Cancellation, SSBI |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,OFDM系統已經漸漸取代了傳統的OOK(on-of keying)調變方式。由於OFDM系統其正交的特性,使訊號頻率彼此間可以重疊,因此頻率使用率可以大幅提升。而目前在光OFDM系統的架構主要分成直接檢測(direct detection)和同調檢測(coherent detection)兩種。在直接檢測方面,接受後的訊號受雜訊影響較大,也易受載波功率的影響;而同調檢測方面,由於它需要較好的雷射品質和較複雜的偏振穩定和相位的評估等,也就是說它需要較完善的補償機制。相較於同調檢測,直接檢測的架構較為簡單只需要一個photodiode就能進行解調,所以目前都是以直接檢測為實驗上的基礎架構。
由於直接檢測在經過photodiode之後會產生Signal-Signal Beating Interference (SSBI)影響我們的訊號接收,所以一般情況下,直接檢測會保留一定的頻寬間隔來避免SSBI影響到我們要接收的訊號,但由於增加頻寬間隔的方法會降低頻譜的使用率,因此目前學術界也有些關於減少頻寬間隔的討論。
關於減少頻寬間隔的方法目前主要有兩種:(1)載波放大機制(carrier boosting)[1][2],此種作法是先將接收到的載波經過放大器放大之後再和接收的訊號合併變成直接檢測做解調,(2)訊號處理機制(iterative estimation & cancellation technique)[3],有別於上一個做法,此種方式是運用軟體(ex. Matlab)來估測並解決SSBI的問題而相較於上個方法則是利用硬體的方式(ex. 光學元件)間接解決SSBI的問題,兩者比起來,訊號處理機制更能有效的處理SSBI的問題。而本篇提到的Beat Interference Cancellation Receiver, 簡稱BIC,則屬於硬體上消除SSBI,相較於載波放大機制,BIC解調也能以簡單的接收端架構達到減少頻寬間隔的效益。
因此,在本篇中接著會針對BIC架構做各種參數影響的討論,例如filter order和保護頻帶等的探討,並且更進一步分析載波功率和訊號功率之間的取捨來改善解調後的表現。
OFDM system has recently replaced the traditional OOK (on-of keying) modulation.
Due to orthogonal is characteristic of OFDM, so that each carrier can overlap with the other, therefore, we can enabling higher spectral efficiency. And the fundamentals of optical OFDM are using coherent detection and direct detection, respectively. Compared with the coherent detection, the lower-priced and less-complex direct detection would be more suitable to base on experimental architecture.
However, Due to square-law nature of the photodiode, the Signal-Signal Beating Interference (SSBI) would be mix with our detected signal and thus severely influence the system performance. To avoiding this problem is inserted a frequency gap with the same width as the detected signal. Nevertheless, the drawback in a direct detection OFDM system is the low spectral efficiency. Hence, there have been some proposals to the gap issue if the gap width could be reduced or even be discarded.
So far, it can be mainly two proposals at this subject:(1) Carrier-boosting, in which the optical carrier is filtered out and amplified with an EDFA. (2) Signal processing, in which estimates and removes the SSBI by using a digital iterative equalizer. Therefore, our method is also using optical component to solved this gap issue just like Carrier-boosting, but compared with Carrier-boosting, Beat Interference Cancellation (BIC) system can also reduce the frequency gap with least complexity receive architecture.
In this paper, we discuss BIC system with different parameter, ex. Filter order and frequency gap. Furthermore, acquired the better performance we analysis between carrier power and signal power.
[1] K.M. Feng, R.T. Shiu, Y.W. Huang and W.R. Peng, “Sensitivity Improvement Using Amplified Optical Self-Coherent Detection in an Optical OFDM System”. LEOS Annual Meeting Conference Proceedings, pp: 42 - 43, 2009.
[2] Liang Du, A.J. Lowery, “Improving Nonlinear Precompensation in Direct-Detection Optical OFDM Communications Systems”. Optical Communication, ECOC, 2008.
[3] W.R. Peng,, Xiaoxia Wu, K.M. Feng, Vahid R. Arbab, Bishara Shamee, J.Y. Yang, Louis C. Christen, Alan E. Willner, and Sien Chi, “Spectrally efficient direct-detected OFDM transmission employing an iterative estimation and cancellation technique”. Optical Society of America, Fiber optics communications, 2009.
[4] S. Weinstein and P. Ebert, “Data Transmission by Frequency-Division Multiplexing Using the Discrete Fourier Transform”. IEEE Transactions on Communication Technology, vol.19, no.5, pp.628-634, October 1971.
[5] James W. Cooley and John W. Tukey, “An Algorithm for the Machine Calculation of Complex Fourier Series, Mathematics of Computation”. vol. 19, no. 90, pp. 297-301, April 1965.
[6] Astély D, Dahlman E, Furuskär A, Jading Y, Lindström M, and Parkvall S, “ LTE: The Evolution of Mobile Broadband”. IEEE Communications Magazine, April 2009.
[7] R. W. Chang, “Synthesis of band-limited orthogonal signals for multi-channel data transmission”. Journal of Bell syst. Tech. J, vol.45, pp.1775-1796, Dec. 1966.
[8] K. C. Kao and G. A. Hockham, “Dielectric-fibre surface waveguides for optical frequencies, Proceedings of the Institution of Electrical Engineers”. vol.113, no.7, pp.1151-1158, July 1966.
[9] J. Armstrong, “OFDM for Optical Communications”. Journal of Lightwave Technology, vol. 27, no. 3.
[10] Richard van Nee and Ramhee Prasad, “OFDM Wireless Multimedia Communication”. Artech House, Boston/London, 1999.
[11] R.I. Killey, P.M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital Processing and a dual-drive Mach-Zehnder Modulator”. IEEE Photonics Technology Letters, vol.17, no.3, pp.714-716, March 2005.
[12] A. J. Lowery, “Improving Sensitivity and Spectral Efficiency in Direct-Detection Optical OFDM Systems”. OFC/NFOEC, pp.1-3, 2008.
[13] W.R. Peng, Itsuro Morita, and Hideaki Tanaka, “Enabling High Capacity Direct-Detection Optical OFDM Transmissions Using Beat Interference Cancellation Receiver”. ECOC 2010, Torino, Italy, pp.19-23, September, 2010.
[14] F.L. Cheng, “Multi-band Direct-detection Optical OFDM System”. Institute of Communication engineering in NTHU, master thesis, 2011.