簡易檢索 / 詳目顯示

研究生: 張楷弦
Kai-Hsuan Chang
論文名稱: 離子鍍著奈米晶氮氧化鋯薄膜之研究
A Study of Nanocrystakkine Zr(N,O) Thin Films Deposited by Ion Plating
指導教授: 黃嘉宏
Jia-Hong Huang
喻冀平
Ge-Ping Yu
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2005
畢業學年度: 94
語文別: 英文
論文頁數: 99
中文關鍵詞: 氮氧化鋯薄膜氧氣流量相分離奈米晶單斜的二氧化鋯
外文關鍵詞: Z(N,O), Thin film, Oxygen flow rate, Phase separation, Nanocrystalline, Monoclinic ZrO2
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗成功地利用中空陰極離子鍍著系統將奈米晶的氮氧化鋯薄膜鍍著於p型 (111) 矽晶片上。在研究中,主要研究氧氣流量 (自0至8 sccm) 對氮氧化鋯薄膜的成分、結構與性質之影響。隨著氧氣流量的增加,藉由X光光電子能譜儀所量測到氮氧化鋯薄膜的氧含量顯著增加。當氧含量增加時,薄膜的顏色由金黃色改變為藍色,最後是灰藍色;由場發射掃描式電子顯微鏡所觀察到的微結構也有明顯的改變。觀察X光繞射圖發現,氧含量超過9.7 %時發生了相分離的現象,觀察低掠角X光繞射圖也證實發生氮化鋯與單斜的二氧化鋯兩個相之間的相分離。在氮氧化鋯薄膜中,氮化鋯相的晶粒大小在12到5 nm間,二氧化鋯相的晶粒大小則是在8到2 nm間。本研究中提出了一個相分離的機制:當氧含量低時,二氧化鋯相在氮化鋯相的晶界上析出並逐漸包覆,而當氧含量提高時則是兩相之間的成長競爭。當氧含量從3.5 %增至9.7 %時,薄膜的硬度微幅上升,而氧含量超過9.7 %繼續增加時,硬度很快地降至二氧化鋯薄膜的値15.7 GPa。本研究中使用光學方法量測薄膜的整體殘留應力,並使用修正的X光繞射 sin2ψ的方法分別量測氮化鋯與二氧化鋯兩個相的殘留應力。在二氧化鋯相的比率低於30 %時,整體的殘留應力接近氮化鋯相的殘留應力値,而在二氧化鋯相的相對比率高於30 %時接近二氧化鋯相的殘留應力。隨著氧含量的增加,薄膜的電阻率非常明顯地上升。整體而言,當二氧化鋯相的相對比率低於30 %時,薄膜的性質較接近氮化鋯相的性質,而在二氧化鋯相的相對比率超過30 %時,二氧化鋯相支配了薄膜的性質。


    Nanocrystalline Zr(N,O) thin films were deposited on p-type (111) Si wafers using hollow cathode discharge ion-plating (HCD-IP) system. The effect of oxygen flow rate (ranging from 0 to 8 sccm) on the composition, structure and properties of the Zr(N,O) thin films was investigated. The oxygen content of the thin film determined using X-ray Photoelectron Spectroscopy (XPS) increased significantly with the increase of the oxygen flow rate. As the oxygen content increased, the color of Zr(N,O) thin film changed from golden yellow to blue and then slate blue; the microstructure observed by Field-Emission Gun Scanning Electron Microscopy (FEG-SEM) changed obviously. Phase separation was observed in X-ray Diffraction (XRD) patterns when the oxygen content was higher than 9.7 at%. Glancing incidence X-ray diffraction (GIXRD) results also indicated that phase separation of ZrN and monoclinic ZrO2 occurred. The grain sizes of the ZrN and ZrO2 phases in the Zr(N,O) films were ranged from 12 to 5 nm and 8 to 2 nm, respectively. A phase separation mechanism was proposed: the ZrO2 phase precipitated on grain boundaries as the oxygen content was lower than 32 %, and above which, a growth competition between ZrN and ZrO2 occurred. The hardness of the film increased slightly as the oxygen content was less than 9.7 % and decreased to 15.7 GPa, a typical value of ZrO2 phase, as the oxygen content further increased. The total residual stress of the film was measured using an optical method and the residual stresses of ZrN and ZrO2 phase were measured separately using modified XRD sin2Ψ method. The total stress was close to that in ZrN phase as the fraction of ZrO2 phase was less than 30 %, and was close to that in ZrO2 phase as the fraction was over 30 %. The electrical resistivity of the film increased significantly with the increase of oxygen content. Phase separation showed consistent effects on film properties. As the fraction of ZrO2 phase was small, the properties were more close to those in ZrN. When ZrO2 fraction was about 30 %, the properties of ZrO2 would dominate the film properties.

    Contents Abstract…..…..…..…..…..…..…..……………………………………................... i 摘要………………………………………………………………………………… iii 誌謝 …….…...…………………………………………………………………….. iv Contents……………………………………………………………………………. v List of Figures……………………………………………………………………... vii List of Tables………………………………………………………………………. x Chapter 1 Introduction ……….………….………………………………………. 1 Chapter 2 Literature Review ………………….………….……………………… 3 2.1 Coating Meterials…..…………. …..…………. …..………………………… 3 2.1.1 ZrNxOy …………………………………………………………………. 4 2.1.2 ZrN………………………………………………………………… …… 4 2.1.3 ZrO2……………………………………………………………………... 5 2.2 Deposition Methods …………………………………………………………. 5 2.3 Effect of Processing Parameters on the Structure and Properties of TMeNxOy……………………………………………………………………………………………………… 10 2.3.1 Oxygen Flow Rate………………………………………………………. 10 2.3.2 Substrate Bias…………………………………………………………… 12 2.3.3 Heat Treatment………………………………………………….……….. 14 Chapter 3 Experimental Details…..……………………………………………… 16 3.1 Preparation of Subtrate Material and Coating Process……….……………… 16 3.2 Characterization Methods…………………………………….……………… 18 3.2.1 XPS……………...………………………………………………………. 18 3.2.2 RBS…………….………………………………………………………... 19 3.2.3 AES…………….………………………………………………………... 19 3.2.4 XRD…………….……………………………………………………….. 20 3.2.5 FEG-SEM……………………………………………………………….. 21 3.3 Properties Measurement…….……………………………………………….. 22 3.3.1 Electrical Resistivity…………………………………………………….. 22 3.3.2 Hardness………………………………………………………………… 22 3.3.3 Residual Stress…………………………………………………………... 23 Chapter 4 Results…………..…………….……………………………………….. 28 4.1 Composition………………………………………………….………………. 28 4.1.1 XPS……………………….. ………………………………………….… 28 4.1.2 AES (Compositional Depth Profiles)……………………………………. 41 4.2 Structure……………………………….…………………………………….. 45 4.2.1 SEM……………………………………………………………………... 45 4.2.2θ/2θ XRD…………………………………………………………….. 48 4.2.2 Lattice Parameter……………………………………………………….. 56 4.3 Properties…………………………………………………………………….. 62 4.3.1 Hardness………………………………………………………………… 62 4.3.2 Residual Stress………………………………………………………….. 65 4.3.3 Roughness………………………………………………………………. 68 4.3.4 Packing Density……………………………………………………….… 72 4.3.5 Electrical Resistivity……………………………………………………. 75 Chapter 5 Discussion……...………………...…………………………………….. 77 5.1Structure………………………………………………….…………………… 78 5.2 Phase separation mechanism……………………………………………..….. 79 5.3 Properties Related to Phase Separation……………………………………… 84 5.3.1 Hardness……………………………………………….………………... 84 5.3.2 Residual stress………………………………………………………….. 88 5.3.3 Electrical Resistivity……………………………………………………. 90 Chapter 6 Conclusions……...………………...…………………………………... 93 References ………………………………………………………………………… 95 List of Figures Fig. 2.1 The crystal structure of a stoichiometric ZrN showing the NaCl crystal structure………………………………………………………. 7 Fig. 2.2 The crystal structure of a stoichiometric ZrO2 (a) cubic (b) tetragonal (c) monoclinic………………………………………………………... 7 Fig. 2.3 The Hollow Cathode Discharge Ion-Plating (HCD-IP) system……… 9 Fig. 3.1 The schematic diagram of the In-situ Curvature System…………….. 26 Fig. 3.2 The stress analysis of film-substrate combination: elastic bending of beam under applied end moment…………………………………….. 27 Fig 4.1 Full XPS spectrum from a Zr(N,O) sample deposited at 5 sccm O2…... 33 Fig 4.2 Deconvoluted Zr 3d (a), N 1s (b) and O 1s (c) spectra for the samples deposited at 0 sccm O2………………………………………………………………………... 34 Fig. 4.3 Deconvoluted Zr 3d (a), N 1s (b) and O 1s (c) spectra for the samples deposited at 8 sccm O2………………………………………………………………………... 35 Fig. 4.4 The spectra of Zr 3d for samples with different oxygen flow rate…… 36 Fig. 4.5 The spectra of N 1s for samples with different oxygen flow rate……. 37 Fig. 4.6 The spectra of O 1s for samples with different oxygen flow rate……. 38 Fig. 4.7 The element contents vs. O2 flow rate……………………………….. 39 Fig. 4.8 The bonds fraction vs. the oxygen content…………………………… 40 Fig. 4.9 The AES compositional depth profiles of sample No.1……………… 42 Fig. 4.10 The AES compositional depth profiles of sample No.4……………… 42 Fig. 4.11 The AES compositional depth profiles of sample No.5……………… 43 Fig. 4.12 The AES compositional depth profiles of sample No.7……………… 43 Fig. 4.13 The atomic percent of Zr, N and O vs. O2 flow rate…………………. 44 Fig. 4.14 The cross-sectional SEM picture of sample No.1 (a), No.3 (b) and No.4 (c)………………………………………………………………. 46 No.5 (d), No.6 (e), No.7 (f), No.8 (g)………………………………... 47 Fig. 4.15 The XRD patterns for all specimens deposited at oxygen flow rate ranging from 0 to 8 sccm…………………………………………….. 50 Fig. 4.16 The deconvolution pattern of the sample deposited at 5 sccm O2…… Fig. 4.17 The deconvolution pattern of the sample deposited at 8 sccm O2…… 52 Fig. 4.18 The fraction of m-ZrO2 phase vs. oxygen content…………………… 53 Fig. 4.19 The calculated atomic percent of Zr, N and O from XRD results vs. the oxygen content determined using XPS…………………………... 54 Fig. 4.20 The grain size of ZrN vs. the oxygen content………………………... 55 Fig. 4.21 The grain size of ZrO2 vs. the oxygen content……………………….. 55 Fig. 4.22 The GIXRD patterns for all specimens deposited at oxygen flow rate ranging from 0 to 4 sccm…………………………………………….. 58 Fig. 4.23 The GIXRD patterns for all specimens deposited at oxygen flow rate ranging from 5 to 8 sccm…………………………………………….. 59 Fig. 4.24 The GIXRD pattern of the sample deposited at 0 sccm O2………….. 60 Fig. 4.25 The GIXRD pattern of the sample deposited at 0 sccm O2…………... 60 Fig. 4.26 The linear fitting result of ZrN lattice parameter…………………….. 61 Fig. 4.27 The linear fitting result of ZrO2 lattice parameter……………………. 61 Fig. 4.28 The film hardness vs. the oxygen content……………………………. 63 Fig. 4.29 The Young’s modulous vs. the oxygen content………………………. 64 Fig. 4.30 The compressive stress vs. the oxygen content………………………. 67 Fig. 4.31 The AFM image of the sample No.1 (a) and No.4 (b) at 1 μm2 scan size…………………………………………………………………… 69 No.5 (c) and No.8 (d) at 1 μm2 scan size…………………………... 70 Fig. 4.32 The root mean square value of roughness (Rrms) vs. the oxygen content………………………………………………………………... 71 Fig. 4.33 Typical RBS spectrum of the sample with oxygen content of 31.9 %.. 73 Fig. 4.34 The packing density vs. the oxygen content…………………………. 74 Fig. 4.35 The electrical resistivity vs. the oxygen content……………………... 75 Fig. 5.1 The N/Zr and the O/Zr ratios vs. the oxygen flow rate………………. 80 Fig. 5.2 The schematic diagram of the cubic ZrN grain………………………. 82 Fig. 5.3 The fraction of the possible substitutional sites for O atoms vs. the grain size……………………………………………………………... 83 Fig. 5.4 The growth mechanism of m-ZrO2 phase: m-ZrO2 is formed on grain boundaries and then progressively surrounds the whole grain……… 84 Fig. 5.5 The film hardness vs. the fraction of ZrO2 phase……………………. 87 Fig. 5.6 The residual stress of the films vs. the fraction of ZrO2 phase………. 89 Fig.5.7 The electrical resistivity vs. the fraction of ZrO2 phase……………… 92 List of Tables Table 2.1 Physicochemical properties of ZrO2……………………………….. 8 Table 3.1 The optimum coating conditions of ZrN and ZrNxOy films………... 17 Table 4.1 The summary of experimental results I…………………………….. 31 Table 4.2 The summary of experimental results II…………………………… 32 Table 4.3 The lattice parameter of ZrN and ZrO2 phase……………………… 57

    1. U.K. Wiiala, I.M. Penttinen, A.S. Korhonen, Surf. Coat. Technol. 41 (1990) 191.
    2. L. V. Leaven, M.N. Alias, R. Brown, Surf. Coat. Technol. 53 (1992) 25
    3. P. Panjan, B. Navinsek, A. Zabkar, Dj. Mandrino, J. Fiser, Thin Solid Films 228 (1993) 233
    4. P.C. Johnson, H. Randhawa, Surf. Coat. Technol., 33 (1987) 53.
    5. E. Kelesoglu, C. Mitterer, M.K. Kazmanli, M. Urgen, Surf. Coat. Technol., 116-119 (1999) 133.
    6. E. Budke, J. Krempel-Hesse, H. Maidhof, H. Schussler, Surf. Coat. Technol. 112 (1999) 133
    7. B. Zega, Surf. Coat. Technol. 39/40 (1989) 507.
    8. C. Mitterer, J. Komenda-Stallmaier, P. Losbichler, P. Schmolz, W.S.M. Werner, H. Stori, Vaccum 46 (1995) 1281
    9. L. Cunha, F. Vaz, C. Moura, L. Rebouta, P. Carvalho, E. Alves, A. Cavaleiro, Ph. Goudeau, J. P. Riviere, Surf. Coat. Technol., (2004) in press.
    10. R. Fraunchy, Surf. Sci. Rep., 38 (2000) 195.
    11. M. Ohring, The Materials Science of Thin Films, Academic Press Inc, San Diego, 1992, p. 511.
    12. J. -H. Huang, H. -C. Yang, X. -J. Guo, G. -P. Yu, Surf. Coat. Technol. 195 (2005) 204.
    13. C. H. Ho, “Effect of Nitrogen Flow Rate on the Structure and Properties of Nanocrystalline ZrN Thin Film deposited by HCD Ion Plating”, Master Thesis, 2003. National Tsing Hua University, R.O.C.
    14. W. J. Chou, C. H. Sun, G.P. Yu, J. H. Huang, Mater. Chem. Phys, 82 (2003) 228
    15. Wen-Jun Chou, “Processing and Properties of Metal Nitride Thin Films Deposited by PVD Methods”, 2003, Ph. D Thesis, National Tsing Hua University, R.O.C.
    16. F. Vaz, P. Cerqueira, L. Rebouta, S.M.C. Nascimento, E. Alves, Ph. Goudeau, J.P. Riviere, K. Pischow, J. de Rijk, Thin Solid Films, 447-448 (2004) 449.
    17. Jean-Marie Chappe, Nicolas Martin, Guy Terwagne, Jan Lintymer, Joseph Gavoille, Jamal Takadoum, Thin Solid Films, 440 (2003) 66.
    18. N. Martin, O. Banakh, A.M.E. Santo, S. Springer, R. Sanjines, J. Takadoum, F. Levy, Appl. Surf. Sci., 185 (2001) 123.
    19. N. Martin, R. Sanjines, J. Takadoum, F. Levy, Surf. Coat. Technol., 142-144 (2001) 615.
    20. F. Vaz, P. Cerqueira, L. Rebouta, S.M.C. Nascimento, E. Alves, Ph. Goudeau, J.P. Riviere, Surf. Coat. Technol., 174-175 (2003) 197.
    21. F. Vaz, P. Cerqueira, L. Rebouta, S.M.C. Nascimento, E. Alves, Ph. Goudeau, J.P. Riviere, K. Pischow, J. de Rijk, Thin Solid Films, 447-448 (2004) 449.
    22. J. M. Chappe, N. Martin, G. Terwagne, J. Lintymer, J. Gavoille, J. Takadoum, Thin Solid Films, 440 (2003) 66.
    23. F. Fabreguette, L. Imhoff, M. Maglione, B. Domenichini, M.C.M. Lucas, P.Sibillot, S. Bourgeois, M. Saciolotti, Chem. Vap. Depos. 6 (3) (2000) 615.
    24. C. Rousselot, N. Martin, Surf. Coat. Technol. 142-144 (2001) 206.
    25. P. Carvalho, F. Vaz, L. Rebouta, S. Carvalho, L. Cunha, Ph. Goudeau, J. P. Riviere, E. Alves, A. Cavaleiro, Surf. Coat. Technol., (2005) in press.
    26. S. Venkataraj, O. Kappertz, R. Jayavel, M. Wuttig, J. Appl. Phys., 92 (2002) 2461.
    27. Wen-Jun Chou, Ge-Ping Yu, Jia-Hong Huang, Surf. Coat. Technol. 149 (2002) 7.
    28. J. Musil and J. Wolfe, Mater. Sci. Eng., A 163 (1993) 211.
    29. P. Jin, S. Maruno, Jpn. J. Appl. Phys., 30 (7) (1991) 1463.
    30. E. Törok, A.J. Perry, L. Chollet, W.D. Sproul, Thin Solid Films, 153 (1987) 37.
    31. L.E. Toth, “Transition Metal Carbides and Nitrides”, Academic press, New York, 1971, p. 188.
    32. J. H. Huang, K. W. Lau, G. P. Yu, Surf. Coat. Technol. 191 (2005) 17.
    33. W.J. Chou, G.P. Yu, J.H. Huang, Thin Solid Films, 405 (2002) 162
    34. J.H. Huang, C.Y. Hsu, S.-S. Chen, G.-P. Yu, Mater. Chem. and Phys. 77 (2002) 14.
    35. A. H. Heuer, M. Ruhle, “Phase Transformation in ZrO2 –Containing Ceramics: I, The Instability of c-ZrO2 and the Resulting Diffusion-Controlled Reactions”, 1984, The American Ceramic Society.
    36. Peir-Yung Chu, Isabelle Campion, and Relva C. Buchanan, J. Mater. Res. 7 (1992) 11.
    37. S. Venkataraj, O. Kappertz, C. Liesch, R. Detemple, R. Jayavel, M. Wutting, Vacuum, 75 (2004) 7.
    38. Z. W. Zhao, B. K. Tay, G. Q. Yu, S. P. Lau, J. Phys., Condens. Mat., 15 (2003) 7707.
    39. A. Hidaka, J. Nakamura, J. Sugimoto, Nucl, Eng. Des., 168 ( 1997) 361.
    40. K. Maca, H. Hadraba, J. Cihlar, Nucl. Eng. Des., 168 (1997) 361.
    41. A. Emeline, G.V. Kataeva, A. S. Litke, A. V. Rudakova,V. K. Ryabchuk, N. Serpone, Langmuir, 14 (1998) 5011.
    42. F. Cernuschi, S. Ahmaniemi, P. Vuoristo, T. Mantyla, J. Eur. Ceram. Soc., 24 (2004) 2657.
    43. X. J. Chen, K. A. Khor, S. H Chan, L. G. Yu, Mater. Sci. Eng. 335 (2002) 246.
    44. Cheol Seong Hwang, Hyeong Joon Kim, J. Mater. Res. 8 (1993) 6.
    45. M. G. Krishna, K. Narasimha, S. Mohan, Thin Solid Films, 193-194 (1990) 690.
    46. W. W. Davison, R. C. Buchanan, Advances in Ceramics, edited by M. F. Yan (American Ceramic Society, Westerville, OH), 1989, Vol. 26, p. 513.
    47. H. Myoren, Y. Nishiyama, H. Fukumoto, H. Sasu, and Y. Osaka, Jpn. J. Appl. Phys., 28(3) (1989) 351.
    48. S. S. Sim, P-Y. Chu, R. H. Krabill, and D. E. Clark, Ultrastructure Processing of Advanced Ceramics, edited by J. D. Mackenzie (John Wiley & Sons, New York, 1988), p. 995.
    49. W. Ensinger, A. Schroer, G. K. Wolf, Nucl. Instrum. Meth. Phys. Res. B, 80/81 (1993) 445.
    50. E. Ariza, L. A. Rocha, F. Vaz, L. Cunha, S.C. Ferreira, P. Carvalho, L. Rebouta, E. Alves, Ph. Goudeau, J. P. Riviere, Thin Solid Films, 469-470 (2004) 274.
    51. R.A. Dugdale, J. Mater. Sci., 1(1966) 160.
    52. Y. Makino, M. Nose, T. Tanaka, M. Misawa, A. Tanimoto, T. Nakai, K. Kato, K. Nogi, Surf. Coat. Technol., 98 (1998) 934.
    53. Powder Diffraction File of the International Center foe Diffraction, PDF-ICDD 21-1272, 21-1276, and others.
    54. Powder Diffraction File of the International Center foe Diffraction, PDF-ICDD card No. 49-1325.
    55. F. Vaz, P. Carvalho, L. Cunha, L. Rebouta, C. Moura, E. Alves, A.R. Ramos, A. Cavaleiro, Ph. Goudeau, J. P. Riviere, Thind Solid Films, 469-470 (2004) 11.
    56. M. J. Jung, K. H. Nam, Y. M. Chung, J. H. Boo, J. G. Han, Surf. Coat. Technol. 171 (2003) 71.
    57. P. A. Schweitzer, P. E. Schweitzer, Metallic Materials, Marcel Dekker, Inc. 2003, p657.
    58. W. Ensinger, H. R. Muller, Surf. Coat. Technol. 163-164 (2003) 281.
    59. L. Hultman, Vacuum 57 (2000) 1.
    60. P. Scherrer, Gött. Nachr 2, (1918) 98.
    61. L. V. Azaroff, M. J. Buerger, “The Powder Method in X-Ray Crystallography”, McGraw-Hill, New York, 1958, p.233.
    62. C.H. Ma, J.H. Huang, Haydn Chen, Thin Solid Films, 418 (2002) 73-78.
    63. W. C. Oliver, G. M. Pharr, J. Mater. Res. 7 (1992) 1564.
    64. M. Ohring, The Materials Science of Thin Films, Academic Press Inc, San Diego, 1992, p. 416.
    65. I. Milosev, H.-H. Strehblow, M. Gaberscek, B. Navinsek, Surf. Interface Anal. 24 (1996) 448.
    66. M. Del Re, R. Gouttebaron, J-P. Dauchot, P. Leclere, G. Terwagne, M. Hecq, Surf. Coat. Technol., 174 (2003) 240.
    67. K. S. Robinson, P-M. A. Sherwood, Surf. Interface Anal. 6 (1984) 6.
    68. J. C. Vickerman, Surface Analysis – The Principal Techniques, John Wiley and Sons, 1997, p58.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE