簡易檢索 / 詳目顯示

研究生: 何品翰
Ho, Pin-Han
論文名稱: 以一階段共濺鍍法製備具鎵梯度銅銦鎵硒薄膜太陽能電池
Ga-grading of Cu(In, Ga)Se2 solar cell by one-step co-sputtering process
指導教授: 賴志煌
Lai, Chih-Huang
口試委員: 張慶瑞
Chang, Ching-Ray
謝嘉民
Shieh, Jia-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 61
中文關鍵詞: 薄膜太陽能電池銅銦鎵硒鎵梯度一階段共濺鍍製程
外文關鍵詞: Thin-film solar cells, Cu(In, Ga)Se2, Ga-grading, One-step co-sputtering process
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 具有鎵梯度結構對於高效率薄膜銅銦鎵硒(CIGSe)太陽能電池為一關鍵因素,藉由調控鎵含量能夠調整吸收層之導帶位置,在吸收層內不同區域添加鎵梯度結構,將會給予不同的元件影響,如背向階梯式鎵分布藉由額外產生之內建電場,增加長波長區段之載子收集及增加開路電壓;然而,因鎵會受到許多因素影響,導致鎵容易堆積在背電極處並損害元件表現,故不僅在三階段共蒸鍍製程或二階段合金後硒硫化製程中,調控鎵含量為一極其困難之技術。在本研究當中,我們提出利用一階段共濺鍍法製備具鎵梯度結構之銅銦鎵硒太陽能電池,在使用雙靶材進行共濺鍍可直接藉由調整濺鍍功率,建立具有鎵梯度之結構,並比較使用二元Ga2Se3靶材與三元CGSe靶材對於製程與元件之影響。二元Ga2Se3靶材因高能量濺鍍製程,導致靶材氧化並形成Ga2O3化合物,此化合物於CIGSe吸收層內被視為電洞能障,大幅損害元件電性;而三元CGSe靶材因Cu-Se鍵結強度較強之特性,可避免靶材不穩定性問題,儘管如此,計量比之CGSe為一介金屬化合物,易在高溫濺鍍過程中發生相分離,並生成Cu2-XSe二次相,此二次相存在於CIGSe吸收層時會產生針孔狀缺陷,導致開路電壓及填充因子下降。因此我們提出使用缺銅CGSe靶材來克服Cu2-XSe二次相產生之問題,最終藉由添加鎵梯度結構且無二次相存在下,我們可以將單一能隙元件效率12.21%提升至具鎵梯度結構元件效率15.63%。


    Normal Ga-grading structure in CIGSe absorber has been regrarded as a crucial factor for achieving high-efficiency solar cells. Since the Ga is readily segregated in the backside of CIGSe absorber both in three-stage co-evaporation process and two-step process, constructing Ga-grading profile is a challenging but critical work during the deposition. Here, a promising process for controlling the Ga in CIGSe absorber by using one-step co-sputtering has been demonstrated. Co-sputtering with Ga2Se3 binary target and CIGSe quaternary target is directly used to adjust the Ga-grading profile, but the oxidation of Ga2Se3 binary target was observed during the sputtering process and the formation of Ga2O3 in CIGSe absorber is referred to a hole barrier which will deteriorate the device performance. Therefore, we propose another approach to construct the Ga-grading structure by co-sputtering with CGSe ternary target and CIGSe quaternary target. With the addition of Cu, the stability issue of target can be worked out, but the excessive Cu contents lead the formation of Cu2-XSe secondary phase. According to the Raman spectra and phase diagram, the inhibition of Cu2-XSe secondary phase is verified by using Cu21% CGSe ternary target. By co-sputtering with Cu21% CGSe ternary target and CIGSe quaternary target, the highest efficiency of 15.63% without post-selenization can be achieved.

    目錄 第一章 序論 1 1-1 引言 1 1-2 銅銦鎵硒(CIGSe)太陽能電池發展 1 第二章 文獻回顧與探討 3 2-1 太陽能光伏元件 3 2-1.1元件物理 3 2-1.2電壓-電流特性 5 2-2 銅銦鎵硒光伏元件結構 9 2-3 銅銦鎵硒薄膜性質 11 2-3.1成分組成 11 2-3.2結構特性 13 2-3.3薄膜缺陷性質 14 2-3.4銅銦鎵硒薄膜製程 16 2-4 可撓式基板 26 2-4.1基板選擇 26 2-4.2效率回顧 27 2-5 能帶工程 29 第三章 實驗方法與分析技術 32 3-1 試片製備 32 3-2 實驗設備 33 3-3 分析儀器 33 3-3.1 X射線螢光光譜儀 (X-ray Fluorescence Spectrometer, XRF) 33 3-3.2 冷場發射掃描式電子顯微鏡暨能量分布分析儀器 (Scanning Electron Microscope, SEM) 34 3-3.3 化學分析電子能譜儀 ( X-ray Photoelectron spectroscopy, XPS) 34 3-3.4 歐傑電子能譜儀 (Auger Electron Spectroscopy, AES) 35 3-3.5 光激發螢光光譜 (Photoluminescence, PL) & 時間解析光激螢光光譜 (Time-Resolved Photoluminescence, TRPL) 35 3-3.6 拉曼光譜儀 (Raman Spectroscopy) 36 3-3.7 半導體分析系統 (Keithley 4200 SCS) 36 3-3.8 外部量子效率量測儀 (External Quantum Efficiency, EQE) 36 第四章 實驗結果與討論 37 4-1 共濺鍍四元CIGSe靶材與二元Ga2Se3靶材 37 4-1.1 建立背向階梯式鎵分布及優化元件表現 37 4-1.2 氧摻入CIGSe吸收層效應 38 4-2 共濺鍍四元CIGSe靶材與三元CGSe靶材 43 4-2.1 不同鎵梯度之元件表現及Cu2-XSe二次相效應 43 4-2.2 缺銅CGSe靶材及優化元件表現 49 第五章 結論 53 參考文獻 54 圖目錄 圖 2-1 P-N接面示意圖 4 圖 2-2 P-N接面能帶示意圖 4 圖 2-3太陽能光伏元件照光下之電壓-電流曲線 7 圖 2-4光伏電池等校電路圖 8 圖 2-5光伏元件外部量子效率圖 8 圖 2-6 CIGSe太陽能光伏元件結構 9 圖 2-7 Cu2Se-In2Se3擬二元相圖 11 圖 2- 8 CIGSe黃銅礦結構 13 圖 2-9不同條件下的共蒸鍍製程 16 圖 2-10 SAS製程示意圖 18 圖 2- 11 (a) 3, (b) 5, (c) 7, (d) 11, (e) 15, (f) 20 mTorr工作氣壓下Mo電極之SEM表面結構圖 20 圖 2-12 生長於(a) 3, (b) 5, (c) 7, (d) 11, (e) 15, (f) 20 mTorr工作氣壓下Mo電極上CIGSe膜層之SEM表面結構圖 20 圖 2-13 CIGSe擇優取向積分值與Mo殘留應力關係圖 20 圖 2- 14不同工作氣壓下 (a)室溫SLG/CIGSe (b) 500℃SLG/CIGSe (c) 500℃SLG/Mo/CIGSe 之XRD圖 21 圖 2- 15 (a)濺鍍過程中OES分析圖 (b)不同工作氣壓下通過KCN溶液處理前後之成分比值 (c) KCN溶液處理前後之拉曼分析圖 21 圖 2-16 KCN溶液處理前後之元件表現圖 22 圖 2-17 (a)添加NaF前後之元件效率 (b)添加NaF前後之I-V曲線 23 圖 2-18 不同後處理之TRPL衰退曲線 24 圖 2-19 不同後處理之元件表現 24 圖 2-20 階梯式鎵分布示意圖 30 圖 2-21 [Ga]/([Ga]+[In])比例之SIMS分布圖 31 圖 2-22 有無背向階梯式鎵分布之EQE圖 31 圖 4-1 有無Ga2Se3共鍍元件之 (a) GGI比例縱深分布圖 (b) TRPL圖 37 圖 4-2 最佳Ga2Se3共濺鍍元件之電性分析 (a) I-V圖 (b) EQE圖 38 圖 4-3 具鎵梯度共鍍元件之I-V曲線及元件特性 39 圖 4-4 XPS組成成分縱深分析 39 圖 4-5 全新靶材之XPS組成成分能譜 (a) Ga 2p3/2 (b) Se 3d3/2, 5/2 (c) O 1s 與已濺鍍使用靶材之XPS組成成分能譜 (d) Ga 2p3/2 (e) Se 3d3/2, 5/2 (f) O 1s 40 圖 4-6 已濺鍍使用靶材之SEM表面形貌影像圖 41 圖 4-7 第五次與第十五次濺鍍測試後CGSe薄膜之XPS組成成分能譜 (a) Cu 2p3/2 (b) Ga 2p3/2 (c) Se 3d3/2, 5/2 (d) O 1s 44 圖 4-8 截面微結構SEM影像 (a) Ga2Se3共鍍吸收層 (b) CGSe共鍍吸收層 45 圖 4-9 利用CIGSe與CGSe雙靶材共濺鍍建立不同鎵梯度之GGI比例縱深分布圖 45 圖 4-10 不同鎵梯度元件之TRPL圖 46 圖 4-11 不同鎵梯度之元件表現 (a) Voc (b) Jsc (c) FF (d) Efficiency (e) I-V圖 (f) EQE圖 47 圖 4-12 CIGSe+Cu25%-CGSe靠近背電極處之 (a)拉曼光譜 (b)放大拉曼光譜 48 圖 4-13 Cu2Se-Ga2Se3相圖 49 圖 4-14 使用缺銅CGSe靶材共濺鍍元件之拉曼光譜 51 圖 4-15使用缺銅CGSe靶材共濺鍍元件之GGI比例縱深分布圖 51 圖 4-16 使用缺銅CGSe靶材製作最佳元件添加抗反射層前後之 (a) I-V圖 (b) EQE圖 52   表目錄 表 2-1 CIGSe薄膜主要缺陷種類 14 表 2-2 各團隊於一階段濺鍍製程之元件表現總表 25 表 2-3 各種類可撓式基板之最高元件效率總表 28 表 4-1 已濺鍍使用靶材表面組成成分EDS分析 41 表 4-2 Ga-Se化合物之可能氧化途徑 42 表 4-3 硒逸散機制途徑 42 表 4-4 Cu-Ga-Se化合物氧化之熱力學方程式 43 表 4-5 不同成分CGSe靶材共濺鍍元件之平均CGI比例與GGI比例 50 表 4-6 分別使用富銅及缺銅CGSe靶材製作相同鎵梯度之元件表現比較 51

    1. Yoshikawa, K., H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nature Energy, 2017. 2: p. 17032.
    2. Kato, T., J. Wu, Y. Hirai, H. Sugimoto, and V. Bermudez, Record Efficiency for Thin-Film Polycrystalline Solar Cells Up to 22.9% Achieved by Cs-Treated Cu(In,Ga)(Se,S)<sub>2</sub>. IEEE Journal of Photovoltaics, 2019. 9(1): p. 325-330.
    3. Lundberg, O., M. Edoff, and L. Stolt, The effect of Ga-grading in CIGS thin film solar cells. Thin Solid Films, 2005. 480-481: p. 520-525.
    4. Gloeckler, M. and J.R. Sites, Band-gap grading in Cu(In,Ga)Se2 solar cells. Journal of Physics and Chemistry of Solids, 2005. 66(11): p. 1891-1894.
    5. Wikipedia contributors. P–n junction. 27 January 2019 18:35 UTC 2 February 2019 10:13 UTC]; Available from: https://en.wikipedia.org/w/index.php?title=P%E2%80%93n_junction&oldid=880487875.
    6. PVCDROM. Available from: https://www.pveducation.org/pvcdrom/solar-cell-operation/quantum-efficiency.
    7. Ishizuka, S., A. Yamada, K. Matsubara, P. Fons, K. Sakurai, and S. Niki, Alkali incorporation control in Cu(In,Ga)Se2 thin films using silicate thin layers and applications in enhancing flexible solar cell efficiency. Applied Physics Letters, 2008. 93(12): p. 124105.
    8. Ishizuka, S., A. Yamada, M.M. Islam, H. Shibata, P. Fons, T. Sakurai, K. Akimoto, and S. Niki, Na-induced variations in the structural, optical, and electrical properties of Cu(In,Ga)Se2 thin films. Journal of Applied Physics, 2009. 106(3): p. 034908.
    9. Ishizuka, S., A. Yamada, K. Matsubara, P. Fons, K. Sakurai, and S. Niki, Development of high-efficiency flexible Cu(In,Ga)Se2 solar cells: A study of alkali doping effects on CIS, CIGS, and CGS using alkali-silicate glass thin layers. Current Applied Physics, 2010. 10(2, Supplement): p. S154-S156.
    10. Reinhard, P., A. Chirilă, P. Blösch, F. Pianezzi, S. Nishiwaki, S. Buechelers, and A.N. Tiwari. Review of progress toward 20% efficiency flexible CIGS solar cells and manufacturing issues of solar modules. in 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2. 2012.
    11. Pagliaro, M., R. Ciriminna, and G. Palmisano, Flexible Solar Cells. ChemSusChem, 2008. 1(11): p. 880-891.
    12. Assmann, L., J.C. Bernède, A. Drici, C. Amory, E. Halgand, and M. Morsli, Study of the Mo thin films and Mo/CIGS interface properties. Applied Surface Science, 2005. 246(1): p. 159-166.
    13. Bär, M., W. Bohne, J. Röhrich, E. Strub, S. Lindner, M.C. Lux-Steiner, C.H. Fischer, T.P. Niesen, and F. Karg, Determination of the band gap depth profile of the penternary Cu(In(1−X)GaX)(SYSe(1−Y))2 chalcopyrite from its composition gradient. Journal of Applied Physics, 2004. 96(7): p. 3857-3860.
    14. Rockett, A., D. Liao, J.T. Heath, J.D. Cohen, Y.M. Strzhemechny, L.J. Brillson, K. Ramanathan, and W.N. Shafarman, Near-surface defect distributions in Cu(In,Ga)Se2. Thin Solid Films, 2003. 431-432: p. 301-306.
    15. Park, J.S., Z. Dong, S. Kim, and J.H. Perepezko, CuInSe2 phase formation during Cu2Se/In2Se3 interdiffusion reaction. Journal of Applied Physics, 2000. 87(8): p. 3683-3690.
    16. Chen, C.-H., T.-Y. Lin, C.-H. Hsu, S.-Y. Wei, and C.-H. Lai, Comprehensive characterization of Cu-rich Cu(In,Ga)Se2 absorbers prepared by one-step sputtering process. Thin Solid Films, 2013. 535: p. 122-126.
    17. Ramanujam, J. and U.P. Singh, Copper indium gallium selenide based solar cells – a review. Energy & Environmental Science, 2017. 10(6): p. 1306-1319.
    18. Zhang, S.B., S.-H. Wei, A. Zunger, and H. Katayama-Yoshida, Defect physics of the CuInSe2 chalcopyrite semiconductor. Physical Review B, 1998. 57(16): p. 9642-9656.
    19. Contreras, M.A., I. Repins, W.K. Metzger, M. Romero, and D. Abou-Ras, Se activity and its effect on Cu(In,Ga)Se2photovoltaic thin films. physica status solidi (a), 2009. 206(5): p. 1042-1048.
    20. Wei, S.H. and A. Zunger, Band offsets and optical bowings of chalcopyrites and Zn‐based II‐VI alloys. Journal of Applied Physics, 1995. 78(6): p. 3846-3856.
    21. Wei, S.-H., S.B. Zhang, and A. Zunger, Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties. Applied Physics Letters, 1998. 72(24): p. 3199-3201.
    22. Rau, U. and H.W. Schock, Electronic properties of Cu(In,Ga)Se2 heterojunction solar cells–recent achievements, current understanding, and future challenges. Applied Physics A, 1999. 69(2): p. 131-147.
    23. Pohl, J. and K. Albe, Intrinsic point defects in CuInSe2 and CuGaSe2 as seen via screened-exchange hybrid density functional theory. Physical Review B, 2013. 87(24): p. 245203.
    24. Siebentritt, S., M. Igalson, C. Persson, and S. Lany, The electronic structure of chalcopyrites—bands, point defects and grain boundaries. Progress in Photovoltaics: Research and Applications, 2010. 18(6): p. 390-410.
    25. Lany, S. and A. Zunger, Light- and bias-induced metastabilities in Cu(In,Ga)Se2 based solar cells caused by the (VSe-VCu) vacancy complex. Journal of Applied Physics, 2006. 100(11): p. 113725.
    26. Mickelsen, R.A. and W.S. Chen, Methods for forming thin-film heterojunction solar cells from I-III-VI. sub. 2. 1982, Google Patents.
    27. Repins, I., M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. To, and R. Noufi, 19·9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor. Progress in Photovoltaics: Research and Applications, 2008. 16(3): p. 235-239.
    28. Albin, D., G. Mooney, A. Duda, J. Tuttle, R. Matson, and R.J.S.C. Noufi, Enhanced grain growth in polycrystalline CuInSe2 using rapid thermal processing. 1991. 30(1-4): p. 47-52.
    29. Dullweber, T., U. Rau, H.J.S.E.M. Schock, and S. Cells, A new approach to high-efficiency solar cells by band gap grading in Cu (In, Ga) Se2 chalcopyrite semiconductors. 2001. 67(1-4): p. 145-150.
    30. Romeo, A., M. Terheggen, D. Abou-Ras, D.L. Bätzner, F.J. Haug, M. Kälin, D. Rudmann, and A.N. Tiwari, Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells. Progress in Photovoltaics: Research and Applications, 2004. 12(2‐3): p. 93-111.
    31. Niki, S., M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, K.J.P.i.P.R. Matsubara, and Applications, CIGS absorbers and processes. 2010. 18(6): p. 453-466.
    32. Piekoszewski, J., J.J. Loferski, R. Beaulieu, J. Beall, B. Roessler, and J. Shewchun, RF-sputtered CuInSe2 thin films. Solar Energy Materials, 1980. 2(3): p. 363-372.
    33. Contreras, M.A., J. Tuttle, A. Gabor, A. Tennant, K. Ramanathan, S. Asher, A. Franz, J. Keane, L. Wang, and J. Scofield. High efficiency Cu (In, Ga) Se/sub 2/-based solar cells: processing of novel absorber structures. in Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion-WCPEC (A Joint Conference of PVSC, PVSEC and PSEC). 1994. IEEE.
    34. Jensen, C.L., D.E. Tarrant, J.H. Ermer, and G.A. Pollock. The role of gallium in CuInSe/sub 2/solar cells fabricated by a two-stage method. in Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference-1993 (Cat. No. 93CH3283-9). 1993. IEEE.
    35. Shi, J., Z. Li, D. Zhang, Q. Liu, Z. Sun, S.J.P.i.P.R. Huang, and Applications, Fabrication of Cu (In, Ga) Se2 thin films by sputtering from a single quaternary chalcogenide target. 2011. 19(2): p. 160-164.
    36. Frantz, J., R. Bekele, V. Nguyen, J. Sanghera, A. Bruce, S. Frolov, M. Cyrus, and I.J.T.S.F. Aggarwal, Cu (In, Ga) Se2 thin films and devices sputtered from a single target without additional selenization. 2011. 519(22): p. 7763-7765.
    37. Chen, C.-H., W.-C. Shih, C.-Y. Chien, C.-H. Hsu, Y.-H. Wu, C.-H.J.S.E.M. Lai, and S. Cells, A promising sputtering route for one-step fabrication of chalcopyrite phase Cu (In, Ga) Se2 absorbers without extra Se supply. 2012. 103: p. 25-29.
    38. Granath, K., A. Rockett, M. Bodegård, C. Nender, and L. Stolt, Mechanical issues of Mo back contacts for Cu (In, Ga) Se2 devices. 1995.
    39. Lin, T.-Y., C.-H. Chen, and C.-H. Lai. Mo effect on one-step sputtering chalcopyrite CIGS thin films. in 2012 38th IEEE Photovoltaic Specialists Conference. 2012. IEEE.
    40. Ye, S., X. Tan, M. Jiang, B. Fan, K. Tang, and S.J.A.o. Zhuang, Impact of different Na-incorporating methods on Cu (In, Ga) Se 2 thin film solar cells with a low-Na substrate. 2010. 49(9): p. 1662-1665.
    41. Schlenker, T., M.L. Valero, H. Schock, and J.J.J.o.C.G. Werner, Grain growth studies of thin Cu (In, Ga) Se2 films. 2004. 264(1-3): p. 178-183.
    42. Klenk, R., T. Walter, H.W. Schock, and D.J.A.M. Cahen, A model for the successful growth of polycrystalline films of CuInSe2 by multisource physical vacuum evaporation. 1993. 5(2): p. 114-119.
    43. Liu, J., D. Zhuang, H. Luan, M. Cao, M. Xie, and X.J.P.i.N.S.M.I. Li, Preparation of Cu (In, Ga) Se2 thin film by sputtering from Cu (In, Ga) Se2 quaternary target. 2013. 23(2): p. 133-138.
    44. Ouyang, L., D. Zhuang, M. Zhao, N. Zhang, X. Li, L. Guo, R. Sun, and M.J.p.s.s. Cao, Cu (In, Ga) Se2 solar cell with 16.7% active‐area efficiency achieved by sputtering from a quaternary target. 2015. 212(8): p. 1774-1778.
    45. Wei, S.-H., S. Zhang, and A.J.J.o.A.P. Zunger, Effects of Na on the electrical and structural properties of CuInSe 2. 1999. 85(10): p. 7214-7218.
    46. Kronik, L., D. Cahen, and H.W.J.A.M. Schock, Effects of sodium on polycrystalline Cu (In, Ga) Se2 and its solar cell performance. 1998. 10(1): p. 31-36.
    47. Cahen, D. and R. Noufi, Defect chemical explanation for the effect of air anneal on CdS/CuInSe2 solar cell performance. Applied Physics Letters, 1989. 54(6): p. 558-560.
    48. Hsu, C.H., Y.S. Su, S.Y. Wei, C.H. Chen, W.H. Ho, C. Chang, Y.H. Wu, C.J. Lin, C.H.J.P.i.P.R. Lai, and Applications, Na‐induced efficiency boost for Se‐deficient Cu (In, Ga) Se2 solar cells. 2015. 23(11): p. 1621-1629.
    49. Cao, Q., O. Gunawan, M. Copel, K.B. Reuter, S.J. Chey, V.R. Deline, and D.B.J.A.E.M. Mitzi, Defects in Cu (In, Ga) Se2 chalcopyrite semiconductors: A comparative study of material properties, defect states, and photovoltaic performance. 2011. 1(5): p. 845-853.
    50. Hsu, C.H., W.H. Ho, S.Y. Wei, and C.H.J.A.E.M. Lai, Over 14% efficiency of directly sputtered Cu (In, Ga) Se2 absorbers without postselenization by post‐treatment of alkali metals. 2017. 7(13): p. 1602571.
    51. Handick, E., P. Reinhard, J.-H. Alsmeier, L. Köhler, F. Pianezzi, S. Krause, M. Gorgoi, E. Ikenaga, N. Koch, R.G.J.A.a.m. Wilks, and interfaces, Potassium postdeposition treatment-induced band gap widening at Cu (In, Ga) Se2 surfaces–reason for performance leap? 2015. 7(49): p. 27414-27420.
    52. Chirilă, A., P. Reinhard, F. Pianezzi, P. Bloesch, A.R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, and H.J.N.m. Hagendorfer, Potassium-induced surface modification of Cu (In, Ga) Se 2 thin films for high-efficiency solar cells. 2013. 12(12): p. 1107.
    53. Thornton, J.A. and T.J.S.c. Lommasson, Magnetron reactive sputtering of copper-indium-selenide. 1986. 16: p. 165-180.
    54. Szaniawski, P., P. Salomé, V. Fjällström, T. Törndahl, U. Zimmermann, and M.J.I.J.o.P. Edoff, Influence of Varying Cu Content on Growth and Performance of Ga-Graded Cu (In, Ga) Se 2 Solar Cells. 2015. 5(6): p. 1775-1782.
    55. Lin, T.-Y., C.-H. Chen, W.-C. Huang, W.-H. Ho, Y.-H. Wu, and C.-H.J.N.e. Lai, Direct probing Se spatial distribution in Cu (InxGa1− x) Se2 solar cells: A key factor to achieve high efficiency performance. 2016. 19: p. 269-278.
    56. Lyu, X., D. Zhuang, M. Zhao, N. Zhang, X. Yu, L. Zhang, R. Sun, Y. Wei, X. Peng, and Y.J.A.S.S. Wu, The effects of annealing temperature on CIGSeS solar cells by sputtering from quaternary target with H2S post annealing. 2019. 473: p. 848-854.
    57. Lyu, X., D. Zhuang, M. Zhao, Q. Gong, L. Zhang, R. Sun, Y. Wei, X. Peng, Y. Wu, and G.J.V. Ren, An investigation on performance enhancement for KF post deposition treated CIGS solar cells fabricated by sputtering CIGS quaternary targets. 2018. 151: p. 233-236.
    58. Ong, K.H., R. Agileswari, B. Maniscalco, P. Arnou, C.C. Kumar, J.W. Bowers, and M.B.J.I.J.o.P. Marsadek, Review on substrate and molybdenum back contact in CIGS thin film solar cell. 2018. 2018.
    59. Batchelo, W.K., M.E. Beck, and R. Huntington, substrate-and-back-contact-effects-in-cigs-devices-on-steel-foil. 2002 IEEE 29nd Photovoltaic Specialist Conference (PVSC).
    60. Hartmann, M., M. Schmidt, and A. Jasenek, Flexible and light weight substrates for CuInGaSe2 solar cell. Conference Record of the Twenty-Eighth IEEE.
    61. Wuerz, R., A. Eicke, M. Frankenfeld, F. Kessler, M. Powalla, P. Rogin, and O.J.T.S.F. Yazdani-Assl, CIGS thin-film solar cells on steel substrates. 2009. 517(7): p. 2415-2418.
    62. Gledhill, S., A. Zykov, N. Allsop, T. Rissom, J. Schniebs, C.A. Kaufmann, M. Lux-Steiner, C.-H.J.S.E.M. Fischer, and S. Cells, Spray pyrolysis of barrier layers for flexible thin film solar cells on steel. 2011. 95(2): p. 504-509.
    63. Satoh, T., Y. Hashimoto, S.-i. Shimakawa, S. Hayashi, T.J.S.e.m. Negami, and s. cells, Cu (In, Ga) Se2 solar cells on stainless steel substrates covered with insulating layers. 2003. 75(1-2): p. 65-71.
    64. Murakami, N., K. Moriwaki, M. Nangu, T. Ohgoh, S. Yuuya, S. Ishizuka, and S. Niki. Monolithically integrated CIGS sub-modules fabricated on new-structured flexible substrates. in 2011 37th IEEE Photovoltaic Specialists Conference. 2011. IEEE.
    65. Wuerz, R., A. Eicke, F. Kessler, S. Paetel, S. Efimenko, C.J.S.E.M. Schlegel, and S. Cells, CIGS thin-film solar cells and modules on enamelled steel substrates. 2012. 100: p. 132-137.
    66. Powalla, M., W. Witte, P. Jackson, S. Paetel, E. Lotter, R. Wuerz, F. Kessler, C. Tschamber, W. Hempel, and D.J.I.J.o.P. Hariskos, CIGS cells and modules with high efficiency on glass and flexible substrates. 2014. 4(1): p. 440-446.
    67. Caballero, R., C. Kaufmann, T. Eisenbarth, M. Cancela, R. Hesse, T. Unold, A. Eicke, R. Klenk, and H.J.T.S.F. Schock, The influence of Na on low temperature growth of CIGS thin film solar cells on polyimide substrates. 2009. 517(7): p. 2187-2190.
    68. Nakada, T., T. Kuraishi, T. Inoue, and T. Mise. CIGS thin film solar cells on polyimide foils. in 2010 35th IEEE Photovoltaic Specialists Conference. 2010. IEEE.
    69. Chirilă, A., P. Bloesch, S. Seyrling, A. Uhl, S. Buecheler, F. Pianezzi, C. Fella, J. Perrenoud, L. Kranz, R.J.P.i.P.R. Verma, and applications, Cu (In, Ga) Se2 solar cell grown on flexible polymer substrate with efficiency exceeding 17%. 2011. 19(5): p. 560-564.
    70. Rudmann, D., D. Brémaud, H. Zogg, and A.J.J.o.A.P. Tiwari, Na incorporation into Cu (In, Ga) Se 2 for high-efficiency flexible solar cells on polymer foils. 2005. 97(8): p. 084903.
    71. Empa -207- thin films and photovoltaics-research topics. Available from: https://www.empa.ch/web/s207/tfsc.
    72. Fraga Chiva, D., T.S. Lyubenova, R.F. Martí Valls, I. Calvet Roures, E. Barrachina Albert, and J.B. Carda Castelló, Ecologic ceramic substrates for CIGS solar cells. 2016.
    73. Green, M.A., S.R. Wenham, and N. Srinivasamohan, Sculpted solar cell surfaces. 1992, Google Patents.
    74. Rau, U., A. Jasenek, H. Schock, F. Engelhardt, and T.J.T.S.F. Meyer, Electronic loss mechanisms in chalcopyrite based heterojunction solar cells. 2000. 361: p. 298-302.
    75. Malmström, J., J. Wennerberg, M. Bodegard, and L.J.M. Stolt, Germany, 17th European Photovoltaic Solar Energy Conference. 2001.
    76. Bothe, K., G. Bauer, and T.J.T.S.F. Unold, Spatially resolved photoluminescence measurements on Cu (In, Ga) Se2 thin films. 2002. 403: p. 453-456.
    77. Eich, D., U. Herber, U. Groh, U. Stahl, C. Heske, M. Marsi, M. Kiskinova, W. Riedl, R. Fink, and E.J.T.S.F. Umbach, Lateral inhomogeneities of Cu (In, Ga) Se2 absorber films. 2000. 361: p. 258-262.
    78. Han, J., C. Liao, T. Jiang, H. Xie, K. Zhao, and M.-P.J.J.o.C.G. Besland, Investigation of copper indium gallium selenide material growth by selenization of metallic precursors. 2013. 382: p. 56-60.
    79. Mainz, R., A. Weber, H. Rodriguez‐Alvarez, S. Levcenko, M. Klaus, P. Pistor, R. Klenk, H.W.J.P.i.P.R. Schock, and Applications, Time‐resolved investigation of Cu (In, Ga) Se2 growth and Ga gradient formation during fast selenisation of metallic precursors. 2015. 23(9): p. 1131-1143.
    80. Lin, T.-Y. and C.-H. Lai. Ga-Grading CIGS solar cell by one-step sputtering from a quaternary target without post-selenization. in 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC). 2015. IEEE.
    81. Cossu, G., G. Ingo, G. Mattogno, G. Padeletti, and G. Proietti, XPS investigation on vacuum thermal desorption of UV/ozone treated GaAs (100) surfaces. Applied surface science, 1992. 56: p. 81-88.
    82. Zhdan, P., A. Shepelin, Z. Osipova, and V. Sokolovskii, The extent of charge localization on oxygen ions and catalytic activity on solid state oxides in allylic oxidation of propylene. Journal of Catalysis, 1979. 58(1): p. 8-14.
    83. Lorenz, M., J. Woods, and R. Gambino, Some electrical properties of the semiconductor β-Ga2O3. Journal of Physics and Chemistry of Solids, 1967. 28(3): p. 403-404.
    84. Tanino, H., H. Deai, and H. Nakanishi, Raman spectra of CuGaxIn1-xSe2. Japanese Journal of Applied Physics, 1993. 32(S3): p. 436.
    85. Ishii, M., K. Shibata, and H. Nozaki, Anion distributions and phase transitions in CuS1-xSex (x= 0-1) studied by Raman spectroscopy. Journal of Solid State Chemistry, 1993. 105(2): p. 504-511.
    86. Minceva-Sukarova, B., M. Najdoski, I. Grozdanov, and C. Chunnilall, Raman spectra of thin solid films of some metal sulfides. Journal of molecular structure, 1997. 410: p. 267-270.
    87. Shafarman, W.N. and J. Zhu, Effect of substrate temperature and depostion profile on evaporated Cu (InGa) Se2 films and devices. Thin Solid Films, 2000. 361: p. 473-477.
    88. Wang, S., T. Nazuka, H. Hagiya, Y. Takabayashi, S. Ishizuka, H. Shibata, S. Niki, M.M. Islam, K. Akimoto, and T. Sakurai, Depth Profile of Impurity Phase in Wide-Bandgap Cu (In 1− x, Ga x) Se 2 Film Fabricated by Three-Stage Process. Journal of Electronic Materials, 2018. 47(9): p. 4944-4949.
    89. Niki, S., P. Fons, A. Yamada, Y. Lacroix, H. Shibata, H. Oyanagi, M. Nishitani, T. Negami, and T. Wada, Effects of the surface Cu 2− x Se phase on the growth and properties of CuInSe 2 films. Applied physics letters, 1999. 74(11): p. 1630-1632.
    90. Hsieh, T.-P., C.-C. Chuang, C.-S. Wu, J.-C. Chang, J.-W. Guo, and W.-C. Chen, Effects of residual copper selenide on CuInGaSe2 solar cells. Solid-State Electronics, 2011. 56(1): p. 175-178.
    91. Strok, O., I. Olekseyuk, O. Zmiy, I. Ivashchenko, and L. Gulay, The Quasi-Ternary System Cu 2 Se-Ga 2 Se 3-GeSe 2. Journal of phase equilibria and diffusion, 2013. 34(2): p. 94-103.

    QR CODE