簡易檢索 / 詳目顯示

研究生: 雷震邦
論文名稱: 準線性橢圓邊界值問題解路徑之分岐問題探討
Numerical investigation for the bifurcation problems of a quasilinear elliptic equation with boundary values
指導教授: 簡國清
口試委員:
學位類別: 碩士
Master
系所名稱:
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 75
中文關鍵詞: 隱函數定理虛擬弧長延拓法中央有限差分法割線預測法牛頓迭代法
外文關鍵詞: implicit function theorem, pseudo-arclength, continuation method, central finite difference method, secant predictor, newton's iterative method
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文,旨在探討準線性橢圓邊界值問題之解路徑的問題。我們使用五點分割的中央有限差分法、割線預測法、牛頓迭代法、隱函數定理、虛擬弧長延拓法,找出我們的準線性橢圓模型在有限邊界內之解路徑,其中包括找出其轉彎點與分歧點,並對其解路徑之分歧與延拓加以分析,探討準線性橢圓問題之解路徑的變化。


    In this paper , we investigate the solution paths of a quasilinear elliptic equation with boundary values . We use the central finite difference method , secant predictor , newton’s iterative method , implicit function theorem ,
    pseudo-arclength continuation method to find the solution paths of the model .
    Furthermore , we will locate the turning points and bifurcation points of the solution paths of the model . We also investigate of the solution paths of the quasilinear elliptic model .

    第一章  緒論……………………………………………………….1 第二章  分歧理論與延拓法……………………………………….4   2.1  分歧問題…………………………………………….….4   2.2  分歧理論…………………………………………….….6   2.3  局部延拓法……………………………………….…….8   2.4  虛擬弧長延拓法……………………………………….10   2.5  分歧點與簡單特徵值………………………………… 12 第三章  準線性橢圓問題的數值方法…………………………..19 3.1 有限差分法…………………………………………….19 3.2 牛頓迭代法…………………………………………….23 3.3 虛擬弧長延拓法……………………………………….24 3.4 演算法………………………………………………… 26 第四章  數值實驗…………………………………………………30 4.1  實驗4.1指數參數的解路徑分歧問題……………… 32 4.2  實驗4.2常數參數的解路徑分歧問題……………… 55 4.3  實驗4.3負整數指數參數的解路徑分歧問題……… 62 第五章  結論……………………………………………………… 70

    [1] Aselone, P. M. and Moore, R. H., An Extension of the Newton-Kantorovich Method for Solving Nonlinear Equations with An Application to Elasticity, J.Math. Anal. 13, pp.476-501, (1966)
    [2] Bauer, L., Reiss, E. L., and Keller, H. B., Axisymmetric Bucking of Hollow Spheres and hemispheres, Comm. Pure Appl. Math., 23, pp. 529-568, (1970)
    [3] Choi, Y. S., Jen, K. C., (簡國清) and McKenna, P. J., The Structure of the Solution Set for Periodic Oscillations in a Suspension Bridge Model, IMA J.Appl. Math., 47, pp.283-306, (1991)
    [4] Coron, J. M., Periodic Solutions of a Nonlinear Wave Equation without Asumptions of Monotonicity. Math. Ann., 262, pp.273-285, (1983).
    [5] Crandall, M. G., An Introduction to Constructive Aspects of Bifurcation Theorem, edited by P. H. Rabinowtiz, Academic Press, pp.1-35, (1977).
    [6] Crandall, M. G., and Rabinowitz, P.H. Mathematical Theory of Bifurcation, Bifurcation Phenomena in Mathematical Physics and Related Topics, edit by Bardos, C.and Bessis, D., NATO Advanced Study Institute Series,(1979).
    [7] Jen, K. C. (簡國清), The Stability and Convergence of a Crank-Nicolson Scheme for a Nonlinear Beam Vibration Equation, Chinese Journal of Mathematics, Vol 23, No. 2, pp.97-121, (1995).
    [8] Kawada, T., and Hiral, A. Additional Mass Method – A New Approach to Suspension Bridge Rehabitation. Official Proceedings, 2nd Annual International Bridge Conference. Engineers of Society of Western Pennsylvania. (1985).
    [9] Keller, H. B. and Langford, W.F., Iterations, perturbations and multiplicities for nonlinear bifurcation problems,Arch. Rational Mech.Anal., 48, 83-108(1972).
    [10] Keller, H. B., in “Recent Advances in Numerical Analysis”, Ed. by C. de Boor and G. H. Golub, Academic Press, New York, p.73, (1978).
    [11] Keller, H. B. Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, Applications of Bifurcation Theory, Edited By Rabinowitz, P. H. Academic Press, pp.359-384, (1977).
    [12] Keller, H. B. Lectures on Numerical Methods in Bifurcation Problems,TATA Institute of Fundamental Research , Springer-Verlag, (1987).
    [13] Lazer, A. C., and McKenna, P. J. Large Scale Oscillatory Behaviour in loaded asymmetric systems. Ann. Inst. Henri Poincare: Analyse non Lin’eaire 4(3), pp.243-274, (1987).
    [14] Lazer, A. C., and McKenna, P. J. A Symmetry Theorem and Applications to Nonlinear Partial Differential Equations. J. Diff. Eq. 72, pp.95-106, (1988).
    [15] Lazer, A. C., and McKenna, P. J. Large Amplitude Periodic Oscillations in Suspension Bridge: Some New Connections with Nonlinear Analysis. SLAM Rev. 32, pp.537-578, (1989).
    [16] Matsuzaki, M. Experimental Study on Vortex Excited Oscillation of Suspension Bridge Towers. Trans. Jap. Soc. Civil Eng. 15,172-174, (1985).
    [17] McKenna P. j. and Walter W., Nonlinear Oscillations in a Suspension Bridge. Archive for Rational Mechanics and Analysis. 98(2), 167-177, (1987).
    [18] McKenna P. j. and Walter W., On the Mulitiplicity of the Solution Set of Some Nonlinear Boundary Value Problems. Nonlinear Analysis 8, pp.893-907, (1984).
    [19] Michael G. Crandall and Paul H. Rabinowitz, Bifurcation from Simple EigenValues, Journal of Functional Analysis 8, pp.321-340, (1971).
    [20] Michael G. Crandall and Paul H. Rabinowitz, Mathematical Theory of Bifurcation, Bifurcation Phenomena in Mathematical Physics and Related Topics, edit by C. Bardos and D. Bessis, NATO Advanced Study Institute Series, (1979).
    [21] Patil, S. P. Response of Infinite Railroad Track to Vibrating Mass. J.Eng. Mech. 114, 688-703, (1988).
    [22] Q-Heung Choi and Tacksun Jung, Periodic Solution of the Lazer-McKenna Suspension Bridge Equation, to be submitted , (1989).
    [23] Rheinboldt, W. C., Solution Fields of Nonlinear Equations and Continuation Methods, SIAM J. Numer. Anal., 17, pp.221-237, (1980).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE