簡易檢索 / 詳目顯示

研究生: 楊泊泓
Yang, Po-Hung
論文名稱: CMOS 8×8 電化學多巴胺感測器與電刺激陣列
CMOS 8×8 Electrochemical Dopamine Sensor Array with Electrical Stimulation
指導教授: 盧向成
Lu, Shiang-Cheng
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 75
中文關鍵詞: 電化學感測陣列類比電路多巴胺
外文關鍵詞: electrochemical, sensor array, dopamine, analog circuit
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來多巴胺量的多寡對於腦內疾病有著嚴重的影響,近年來因缺少多巴胺而產生的疾病有帕金森氏症與阿茲海默症,因此建立一個可即時監控腦內多巴胺的電子平台是我們目標。這篇論文敘述了如何大範圍感測多巴胺傳導物質與範圍性刺激細胞,使用電化學感測機制與刺激陣列晶片,並且使用微機電後製程技術整合指叉式金電極於晶片上,利用lift-off方式製作有著5 μm的間隔的電極。CMOS感測電路是電流轉電壓型態,有著1 pF的充電電容與定電壓目的的主動電流源放大器,並且有著大動態範圍。根據先前實驗結果氧化與還原電位分別為-0.2 V與+0.6 V,還原電流相對於多巴胺濃度的靈敏度約為0.25 nA⁄μM。整體功率消耗約為14.5μW。


    第一章 緒論 1 1-1 研究動機 1 1-2 微機電技術簡介 3 1-3 文獻回顧 6 第二章 感測器之原理與設計 13 2-1 感測器之原理與設計 13 2-1-1 電化學氧化還原反應與感測概論 13 2-1-2 電極與電解液接面 19 2-1-3 電化學循環伏安法(Cyclic Voltammetry) 21 2-1-4 神經(Neuron) 23 2-1-5 量子釋放(Quantal Release) 26 2-1-6 感測器的設計與製作 27 2-2 電路設計與原理 31 2-2-1 感測電路系統架構簡介 31 2-2-2 感測電路穩定度分析 33 2-2-3 感測電路操作原理與分析 39 2-2-4 輸出緩衝器設計與分析 43 2-2-5 刺激端緩衝器與總輸出端緩衝器設計與分析 47 2-2-6 數位控制端設計與分析 52 2-2-7 感測電路模擬與佈局 54 第三章 量測結果 62 3-1 晶片封裝與前置作業 62 3-2 晶片量測結果 65 第四章 結論 69 4-1 研究成果與討論 69 4-2 未來工作 69 參考文獻 71

    [1] S. D. Iversen and L. L. Iversen, "Dopamine: 50 years in perspective," Trends in Neurosciences, vol. 30, pp. 188-193, May 2007.
    [2] G. K. Fedder, et al., "Technologies for cofabricating MEMS and electronics," Proceedings of the IEEE, vol. 96, pp. 306-322, Feb 2008.
    [3] O. Brand, "Microsensor integration into systems-on-chip," Proceedings of the IEEE, vol. 94, pp. 1160-1176, Jun 2006.
    [4] J. H. Smith, et al., "Embedded micromechanical devices for the monolithic integration of MEMS with CMOS," International Electron Devices Meeting, 1995 - IEDM Technical Digest, pp. 609-612, 1995.
    [5] C. J. Watson, et al., "In vivo measurements of neurotransmitters by microdialysis sampling," Analytical Chemistry, vol. 78, pp. 1391-1399, Mar 2006.
    [6] R. F. B. Turner, et al., "A CMOS Potentiostat For Amperometric Chemical Sensors," IEEE Journal of Solid-State Circuits, vol. 22, pp. 473-478, Jun 1987.
    [7] A. J. Bard and L. R. Faulkner, Electrochemical methods : fundamentals and applications, 2nd ed. New York: Wiley, 2001.
    [8] M. Schienle, et al., "A fully electronic DNA sensor with 128 positions and in-pixel A/D conversion," IEEE Journal of Solid-State Circuits, vol. 39, pp. 2438-2445, Dec 2004.
    [9] H. S. Narula and J. G. Harris, "A time-based VLSI potentiostat for ion current measurements," IEEE Sensors Journal, vol. 6, pp. 239-247, Apr 2006.
    [10] S. Ayers, et al., "Design of a CMOS potentiostat circuit for electrochemical detector arrays," IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 54, pp. 736-744, Apr 2007.
    [11] R. Genov, et al., "16-Channel integrated potentiostat for distributed neurochemical sensing," IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 53, pp. 2371-2376, Nov 2006.
    [12] M. M. Ahmadi and G. A. Jullien, "Current-Mirror-Based Potentiostats for Three-Electrode Amperometric Electrochemical Sensors," IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 56, pp. 1339-1348, Jul 2009.
    [13] K. Murari, et al., "Integrated potentiostat for neurotransmitter sensing," IEEE Engineering in Medicine and Biology Magazine, vol. 24, pp. 23-29, Nov-Dec 2005.
    [14] M. Stanacevic, et al., "VLSI Potentiostat Array With Oversampling Gain Modulation for Wide-Range Neurotransmitter Sensing," IEEE Transactions on Biomedical Circuits and Systems, vol. 1, pp. 63-72, Mar 2007.
    [15] A. Gore, et al., "A multichannel femtoampere-sensitivity potentiostat array for biosensing applications," IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 53, pp. 2357-2363, Nov 2006.
    [16] M. Roham, et al., "Wireless Amperometric Neurochemical Monitoring Using an Integrated Telemetry Circuit," IEEE Transactions on Biomedical Engineering, vol. 55, pp. 2628-2634, Nov 2008.
    [17] M. Roham, et al., "A Wireless IC for Wide-Range Neurochemical Monitoring Using Amperometry and Fast-Scan Cyclic Voltammetry," IEEE Transactions on Biomedical Circuits and Systems, vol. 2, pp. 3-9, Mar 2008.
    [18] M. Roham, et al., "A Wireless IC for Time-Share Chemical and Electrical Neural Recording," IEEE Journal of Solid-State Circuits, vol. 44, pp. 3645-3658, Dec 2009.
    [19] X. S. Zhu and C. H. Ahn, "On-chip electrochemical analysis system using nanoelectrodes and bioelectronic CMOS chip," IEEE Sensors Journal, vol. 6, pp. 1280-1286, Oct 2006.
    [20] S. Ayers, et al., "Post-CMOS Fabrication of Working Electrodes for On-Chip Recordings of Transmitter Release," IEEE Transactions on Biomedical Circuits and Systems, vol. 4, pp. 86-92, Apr 2010.
    [21] F. L. Chan, et al., "An electrochemical dopamine sensor with a CMOS detection circuit," Journal of Micromechanics and Microengineering, vol. 18, Jul 2008.
    [22] W. S. Wang, et al., "Wide Dynamic Range CMOS Potentiostat for Amperometric Chemical Sensor," Sensors, vol. 10, pp. 1782-1797, Mar 2010.
    [23] 詹豐林 “使用電化學法配合互補式金屬氧化半導體電路之多巴胺定量感測器”, 國立清華大學電子研究所, 民97
    [24] M. Pohanka and P. Skladai, "Electrochemical biosensors - principles and applications," Journal of Applied Biomedicine, vol. 6, pp. 57-64, 2008.
    [25] D. Grieshaber, et al., "Electrochemical biosensors - Sensor principles and architectures," Sensors, vol. 8, pp. 1400-1458, Mar 2008.
    [26] L. C. Clark and C. Lyons, "Electrode Systems for Continuous Monitoring in Cardiovascular Surgery," Annals of the New York Academy of Sciences, vol. 102, pp. 29-&, 1963.
    [27] D. A. Skoog, et al., Principles of instrumental analysis, 6th ed. Belmont, CA: Thomson Brooks/Cole, 2007.
    [28] H. Suzuki, et al., "An integrated three-electrode system with a micromachined liquid-junction Ag/AgCl reference electrode," Analytica Chimica Acta, vol. 387, pp. 103-112, Apr 16 1999.
    [29] S. I. Park, et al., "Application of a new Cl-plasma-treated Ag/AgCl reference electrode to micromachined glucose sensor," IEEE Sensors Journal, vol. 3, pp. 267-273, Jun 2003.
    [30] B. J. Polk, et al., "Ag/AgCl microelectrodes with improved stability for microfluidics," Sensors and Actuators B-Chemical, vol. 114, pp. 239-247, Mar 30 2006.
    [31] http://en.wikipedia.org/wiki/File:Neuron_Hand-tuned.svg
    [32] http://en.wikipedia.org/wiki/File:Synapse_Illustration_unlabeled.svg
    [33] J. N. Crawley, Current protocols in neuroscience. New York, N.Y.: J. Wiley, 1999.
    [34] K. Aoki, et al., "Quantitative-Analysis of Reversible Diffusion-Controlled Currents of Redox Soluble Species at Interdigitated Array Electrodes under Steady-State Conditions," Journal of Electroanalytical Chemistry, vol. 256, pp. 269-282, Dec 9 1988.
    [35] T. V. Shea and A. J. Bard, "Digital-Simulation of Homogeneous Chemical-Reactions Coupled to Heterogeneous Electron-Transfer and Applications at Platinum Mica Platinum Ultramicroband Electrodes," Analytical Chemistry, vol. 59, pp. 2101-2111, Sep 1 1987.
    [36] P. R. Gray, Analysis and design of analog integrated circuits, 4th ed. New York: Wiley, 2001.
    [37] W. Franks, et al., "Impedance characterization and modeling of electrodes for biomedical applications," IEEE Transactions on Biomedical Engineering, vol. 52, pp. 1295-1302, Jul 2005.
    [38] E. T. McAdams, et al., "The Linear and Nonlinear Electrical- Properties of The Electrode-Electrolyte Interface," Biosensors & Bioelectronics, vol. 10, pp. 67-74, 1995.
    [39] J. Kao, et al., "Subthreshold leakage modeling and reduction techniques," IEEE/ACM International Conference on Cad-02, Digest of Technical Papers, pp. 141-148, 2002.
    [40] J. T. Wu, handout of Data-Conversion Integrated Circuits, Taiwan: NCTU, 2010.
    [41] R. J. Baker and Institute of Electrical and Electronics Engineers., CMOS circuit design, layout, and simulation, 2nd ed. New York: IEEE Press, 2005.
    [42] F. Heer, et al., "CMOS microelectrode array for the monitoring of electrogenic cells," Biosensors & Bioelectronics, vol. 20, pp. 358-366, Sep 15 2004.
    [43] M. M. Mano, Digital design, 4th ed. Upper Saddle River, NJ: Prentice-Hall, 2007.
    [44] C.-W. Huang and M. S.-C. Lu,” Electrochemical detection of the neurotransmitter Dopamine by nanoimprinted sub-□m microelectrodes and CMOS Circuitry with near 100% Collection Efficiency,” EUROSENSORS XXIV, Linz, Austria, 5-8 Sept., 2010.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE