簡易檢索 / 詳目顯示

研究生: 徐朝鈺
Chao-Yu Shi
論文名稱: 模式切換律於二維磁浮平台之應用
Application of Mode Switching Law on A Two Dimension Maglev Platform
指導教授: 陳建祥
Jian-Shiang Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 56
中文關鍵詞: 平滑模式控制模式切換控制可變結構切換區域切換函數不確定量擾動估測器狀態相依邊界層切換條件積分平滑模式控制擾動估測於模式切換控制設定點抖動
外文關鍵詞: Sliding Mode Control, Mode Switching Control, Variable Structure, Switching Region, Switching Function, Uncertainty, Disturbance Observer, State-Dependent Boundary Layers, Switching Condition, Integral Sliding Mode Control, Mode Switching Control with disturbance observer, set point, chattering
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文著重於二維磁浮平台控制之應用,磁浮為利用電磁力作用於受控物體上,使物體懸浮於空中無須與物體接觸,避免一般機械定位方式中的摩擦、損耗、粉塵、能量損失等問題,因此可以延長機械物體使用之壽命。然而磁浮系統在平衡狀態為一不穩定系統、非線性、各自由度間之動態耦合、外界干擾、系統多變數變動,所以必須使用適當的控制律。
    本文針對二維磁浮平台系統,設計具有強健性的平滑模式控制器(Sliding Mode Controller),利用模式切換律(Mode Switching law)結合兩種不同的控制器,並提出擾動估測器(Disturbance Observer)於模式切換律中,線上估測系統中的不確定量,以及對外擾能夠有所補償,另外也利用估測值計算隨狀態調變的邊界層(State-dependent boundary layer)以及切換條件(Switching Condition),藉以增加系統的強健性。藉由實驗的結果,其有效性亦獲得進一步的驗證。


    Utilizing electr-magnetic force to lift or suspend the controlled object on the air without contact, a maglev platform can perform friction loss, dust free and minimal energy loss in most mechanical applications. A maglev system is inherently unstable with nonlinearity, dynamic coupling between each directions and external forces, controller design to provide adequate stability is thus sophisticated. This thesis presents a robust sliding mode control (SMC) design with mode switching law on a two-dimension maglev platform. The controller combines the salient features of different controllers to provide robust performance. An on-line disturbance observer is employed to estimate uncertainties of the system. By using this on-line estimate a state-dependent boundary-layer can be obtained, accompany with switching conditions, robust performance can be enhanced. Several experimental results farther validate its efficacy.

    第一章 緒論 1.1 研究背景與動機....................................1 1.2 文獻回顧..........................................2 1.3 本文目的..........................................4 1.4 本文架構..........................................5 第二章 二維磁浮平台系統模型 2.1 電磁線圈力方程式..................................6 2.2 系統數學模型.....................................10 2.3 運動方程式.......................................11 2.4 簡化模型.........................................12 2.5 結語.............................................14 第三章 控制器設計 3.1 控制器設計.......................................15 3.2 垂直方向控制.....................................18 3.3 擾動估測器.......................................19 3.3.1 擾動估測器設計..............................20 3.3.2 輔助方程式..................................21 3.3.3 擾動估測器參數..............................22 3.3.4 狀態相依邊界層..............................23 3.4 結語.............................................24 第四章 實驗設備 4.1 實驗控制流程架構.................................26 4.2 實驗設備.........................................29 4.2.1 二維磁浮平台整體結構........................29 4.2.2 位置感測器..................................29 4.2.3 訊號處理卡..................................30 4.2.4 直流電源模組................................31 第五章 實驗結果與討論 5.1 控制器參數之設定.................................32 5.2 實驗步驟之說明...................................33 5.3 實驗結果.........................................34 5.3.1 模式切換律(固定邊界層)......................34 5.3.2 模式切換律(隨狀態調變的邊界層)..............38 5.4 結論.............................................49 第六章 未來發展建議 6.1 本文貢獻.........................................51 6.2 未來發展建議建議.................................52 附錄[A]電流大小......................................53 附錄[B]系統鑑別......................................54 參考文獻.............................................55 圖目錄 圖2.1 二維磁浮平台整體結構組..............................8 圖2.2 系統示意圖..........................................9 圖3.1 控制系統方塊圖.....................................19 圖3.2 修正後之控制系統方塊圖.............................19 圖4.1 二維磁浮平台控制流程...............................27 圖4.2 磁浮平台實體圖.....................................28 圖4.3 直流源電路圖.......................................31 圖5.1 質心 鉛直方向不同控制方法之定位結果..............36 圖5.2 質心 鉛直方向不同控制方法之控制力................36 圖5.3 俯仰角度 不同控制方法之定位結果...................37 圖5.4 俯仰角度 不同控制方法之控制力.....................37 圖5.5 模式切換質心 定位控制比較........................39 圖5.6 模式切換質心 定位控制力..........................40 圖5.7 模式切換俯仰角度 定位控制比較.....................40 圖5.8 模式切換俯仰角度 定位控制力.......................41 圖5.9 擾動估測器估測結果.................................41 圖5.10 外加力對質心位置之響應及估測結果..................42 圖5.11 外加力對俯仰角度之響應及估測結果.................40 圖5.12 質心 位置設置點控制比較.........................44 圖5.13 質心 位置設置點控制力...........................45 圖5.14 俯仰角度 控制比較................................45 圖5.15 俯仰角度 控制力..................................46 圖5.16 模式切換質心 定位之不同控制方法比較.............47 圖5.17 模式切換質心 定位之不同控制方法控制力...........47 圖5.18 模式切換俯仰角度 定位之不同控制方法比較..........48 圖5.19 模式切換俯仰角度 定位之不同控制方法控制力........48 圖A.1 實驗結果圖5.1與圖5.3電流大小......................53 圖A.2 實驗結果圖5.5與圖5.7電流大小......................53 圖B.1 操作點附近之系統鑑別響應圖............54

    [1] B. V. Jayawant, P. K. Sinha, A. R. Wheeler, R. J. Whorlow, and J. Whillsher, “Development of 1-ton magnetically suspended vehicle using controlled d.c. electromagnets,” IEE Proceedings, vol. 123, pp. 941-948, 1976.
    [2] M. Hisatoni, Y. Inoue, and J. Mitsui, “Development of digitally controlled magnetic bearings,” JSME, Bulletin, vol. 29, pp. 214-220, 1986.
    [3] T. Sato, and Y. Tanno, “Magnetic bearing having PID controller and discontinuous controller,” Proceedings of IECON, pp. 2121-2125, Hawaii, Nov. 1993.
    [4] Jean-Jacques E. Slotine and Weiping Li, Applied Nonlinear Control, Prentice Hall, 1991.
    [5] M. Iwasaki, K. Sakai and N. Matsui, “High-speed and high-precision table position system by using mode switching control,” in proc. 24th Annual Conference of the IEEE, vol. 3, pp. 1727 –1732, Aachen, 1998.
    [6] T. L. Tai, On the Design of Discrete Sliding Mode Controller for a Class of Systems and Its Applications, Ph.D Thesis, Department of Power Mechanical Engineering, National Tsing-Hua University, Taiwan, 2002.
    [7] C. C. Liu, The Design and Implementation of A Maglev Platform, Master Thesis, Department of Power Mechanical Engineering, National Tsing-Hua University, Taiwan, 2003.
    [8] L. S. Hung and S. C. Lin, “A configuration and control of magnetic suspension for three-axis fine positioning system,” Proceedings of the National Science Council, part A, vol. 20, no. 4, pp. 384-392, 1996.
    [9] D. E. Kirk, Optimal Control Theory, Prentice Hall, Englewood Cliffs New Jersey, 1970.
    [10] L. S. Hung, A Multivariable Sliding Mode Control for Magnetic Suspension System and Its Applications, Ph.D Thesis, Department of Power Mechanical Engineering, National Tsing-Hua University, Taiwan, 1998.
    [11] MTI-2000 Fotonic Sensor Instruction Manual, MTI Instruments, NY, 1991.
    [12] AX5412 High Speed Data Acquisition Boards User’s Manual, AXIOM Technology Co., 1994.
    [13] PCL-727 12-CHANNEL D/A Output Card User’s Manual, Advantech Co., 1993.
    [14] H. N. Lin and Y. Kuroe, “Decoupling control of robot manipulators by using variable-structure disturbance observer,” in Proc. of 21th Intern. Conf. on Industrial Electronics Control and Instrumentation, pp. 1266-1271, Orlando, FL, 1995.
    [15] Y. S. Lu and J. S. Chen, “Design of a perturbation estimator using the theory of variable-structure system and its application to magnetic levitation system,” IEEE Trans. Ind. Electron., vol. 42, no. 3, pp. 281-289, 1995.
    [16] P. Korondi, K. D. Young, and H. Hashimoto, “Sliding mode based disturbance compensation for motion control,” in Proc. of 23th Intern. Conf. on Industrial Electronics Control and Instrumentation, pp. 73-78, New Orleans, LA, 1997.
    [17] J. T. Moura, H, Elmali, and N. Olgac, “Sliding mode control with sliding perturbation observer,” ASME J. Dynamic Syst. Meas. Contr., vol.119, pp.657-665, 1997.
    [18] K. D. Young, V. I. Utkin, and U. Ozguner, “A control engineer’s guide to sliding mode control,” IEEE Trans. Contr. Syst. Techn., vol. 7, no. 3, pp. 328-342, 1999.
    [19] V. I. Utkin, J. Guldner, and J. Shi, Sliding Mode Control in Electromechanical System, Taylor & Francis, 1999.
    [20] X. Chen, S. Komada, and T. Fukuda, “Design of a nonlinear disturbance observer,” IEEE Trans. Ind. Electron., vol. 47, no. 2, pp. 429-437, 2000.
    [21] V. Parra-Vega, Y. H. Liu, S. Arimoto, “Variable structure robot control undergoing chattering attenuation: adaptive and nonadaptive cases,” on Robotics and Automation, 1994. Proceedings., 1994 IEEE International Conference, vol. 3, pp.1824-1829, San Diego, CA, May 1994.
    [22] M. S. Chen, Y. R. Hwang, M. Tomizuka, “Sliding mode control reduced chattering for with dependent uncertainties,” Networking, Sensing and Control, 2004 IEEE International Conference, vol. 2, pp. 967-971, Taipei, Taiwan, March , 2004.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE