研究生: |
徐朝鈺 Chao-Yu Shi |
---|---|
論文名稱: |
模式切換律於二維磁浮平台之應用 Application of Mode Switching Law on A Two Dimension Maglev Platform |
指導教授: |
陳建祥
Jian-Shiang Chen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 56 |
中文關鍵詞: | 平滑模式控制 、模式切換控制 、可變結構 、切換區域 、切換函數 、不確定量 、擾動估測器 、狀態相依邊界層 、切換條件 、積分平滑模式控制 、擾動估測於模式切換控制 、設定點 、抖動 |
外文關鍵詞: | Sliding Mode Control, Mode Switching Control, Variable Structure, Switching Region, Switching Function, Uncertainty, Disturbance Observer, State-Dependent Boundary Layers, Switching Condition, Integral Sliding Mode Control, Mode Switching Control with disturbance observer, set point, chattering |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文著重於二維磁浮平台控制之應用,磁浮為利用電磁力作用於受控物體上,使物體懸浮於空中無須與物體接觸,避免一般機械定位方式中的摩擦、損耗、粉塵、能量損失等問題,因此可以延長機械物體使用之壽命。然而磁浮系統在平衡狀態為一不穩定系統、非線性、各自由度間之動態耦合、外界干擾、系統多變數變動,所以必須使用適當的控制律。
本文針對二維磁浮平台系統,設計具有強健性的平滑模式控制器(Sliding Mode Controller),利用模式切換律(Mode Switching law)結合兩種不同的控制器,並提出擾動估測器(Disturbance Observer)於模式切換律中,線上估測系統中的不確定量,以及對外擾能夠有所補償,另外也利用估測值計算隨狀態調變的邊界層(State-dependent boundary layer)以及切換條件(Switching Condition),藉以增加系統的強健性。藉由實驗的結果,其有效性亦獲得進一步的驗證。
Utilizing electr-magnetic force to lift or suspend the controlled object on the air without contact, a maglev platform can perform friction loss, dust free and minimal energy loss in most mechanical applications. A maglev system is inherently unstable with nonlinearity, dynamic coupling between each directions and external forces, controller design to provide adequate stability is thus sophisticated. This thesis presents a robust sliding mode control (SMC) design with mode switching law on a two-dimension maglev platform. The controller combines the salient features of different controllers to provide robust performance. An on-line disturbance observer is employed to estimate uncertainties of the system. By using this on-line estimate a state-dependent boundary-layer can be obtained, accompany with switching conditions, robust performance can be enhanced. Several experimental results farther validate its efficacy.
[1] B. V. Jayawant, P. K. Sinha, A. R. Wheeler, R. J. Whorlow, and J. Whillsher, “Development of 1-ton magnetically suspended vehicle using controlled d.c. electromagnets,” IEE Proceedings, vol. 123, pp. 941-948, 1976.
[2] M. Hisatoni, Y. Inoue, and J. Mitsui, “Development of digitally controlled magnetic bearings,” JSME, Bulletin, vol. 29, pp. 214-220, 1986.
[3] T. Sato, and Y. Tanno, “Magnetic bearing having PID controller and discontinuous controller,” Proceedings of IECON, pp. 2121-2125, Hawaii, Nov. 1993.
[4] Jean-Jacques E. Slotine and Weiping Li, Applied Nonlinear Control, Prentice Hall, 1991.
[5] M. Iwasaki, K. Sakai and N. Matsui, “High-speed and high-precision table position system by using mode switching control,” in proc. 24th Annual Conference of the IEEE, vol. 3, pp. 1727 –1732, Aachen, 1998.
[6] T. L. Tai, On the Design of Discrete Sliding Mode Controller for a Class of Systems and Its Applications, Ph.D Thesis, Department of Power Mechanical Engineering, National Tsing-Hua University, Taiwan, 2002.
[7] C. C. Liu, The Design and Implementation of A Maglev Platform, Master Thesis, Department of Power Mechanical Engineering, National Tsing-Hua University, Taiwan, 2003.
[8] L. S. Hung and S. C. Lin, “A configuration and control of magnetic suspension for three-axis fine positioning system,” Proceedings of the National Science Council, part A, vol. 20, no. 4, pp. 384-392, 1996.
[9] D. E. Kirk, Optimal Control Theory, Prentice Hall, Englewood Cliffs New Jersey, 1970.
[10] L. S. Hung, A Multivariable Sliding Mode Control for Magnetic Suspension System and Its Applications, Ph.D Thesis, Department of Power Mechanical Engineering, National Tsing-Hua University, Taiwan, 1998.
[11] MTI-2000 Fotonic Sensor Instruction Manual, MTI Instruments, NY, 1991.
[12] AX5412 High Speed Data Acquisition Boards User’s Manual, AXIOM Technology Co., 1994.
[13] PCL-727 12-CHANNEL D/A Output Card User’s Manual, Advantech Co., 1993.
[14] H. N. Lin and Y. Kuroe, “Decoupling control of robot manipulators by using variable-structure disturbance observer,” in Proc. of 21th Intern. Conf. on Industrial Electronics Control and Instrumentation, pp. 1266-1271, Orlando, FL, 1995.
[15] Y. S. Lu and J. S. Chen, “Design of a perturbation estimator using the theory of variable-structure system and its application to magnetic levitation system,” IEEE Trans. Ind. Electron., vol. 42, no. 3, pp. 281-289, 1995.
[16] P. Korondi, K. D. Young, and H. Hashimoto, “Sliding mode based disturbance compensation for motion control,” in Proc. of 23th Intern. Conf. on Industrial Electronics Control and Instrumentation, pp. 73-78, New Orleans, LA, 1997.
[17] J. T. Moura, H, Elmali, and N. Olgac, “Sliding mode control with sliding perturbation observer,” ASME J. Dynamic Syst. Meas. Contr., vol.119, pp.657-665, 1997.
[18] K. D. Young, V. I. Utkin, and U. Ozguner, “A control engineer’s guide to sliding mode control,” IEEE Trans. Contr. Syst. Techn., vol. 7, no. 3, pp. 328-342, 1999.
[19] V. I. Utkin, J. Guldner, and J. Shi, Sliding Mode Control in Electromechanical System, Taylor & Francis, 1999.
[20] X. Chen, S. Komada, and T. Fukuda, “Design of a nonlinear disturbance observer,” IEEE Trans. Ind. Electron., vol. 47, no. 2, pp. 429-437, 2000.
[21] V. Parra-Vega, Y. H. Liu, S. Arimoto, “Variable structure robot control undergoing chattering attenuation: adaptive and nonadaptive cases,” on Robotics and Automation, 1994. Proceedings., 1994 IEEE International Conference, vol. 3, pp.1824-1829, San Diego, CA, May 1994.
[22] M. S. Chen, Y. R. Hwang, M. Tomizuka, “Sliding mode control reduced chattering for with dependent uncertainties,” Networking, Sensing and Control, 2004 IEEE International Conference, vol. 2, pp. 967-971, Taipei, Taiwan, March , 2004.