研究生: |
許譽耀 Yu-Yao Hsu |
---|---|
論文名稱: |
動畫資料之摘要法 A Study on Animation Summarization |
指導教授: |
楊熙年
Shi-Nine Yang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊系統與應用研究所 Institute of Information Systems and Applications |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 34 |
中文關鍵詞: | 靜態的摘要畫格 、動態的濃縮動畫 、動畫中摘要之段落 、動畫中聚焦之部份 、動作字串 |
外文關鍵詞: | animation summary, animation skimming, animation summary sequence, animation highlight, motion string |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在真實世界的資料庫裡,例如生物資訊庫,數位音樂庫及人體動作庫等都可能存有隱藏的結構(latent structure)。這類的隱藏資訊通常有助於我們對原始資料的建模分析以及後續的應用。本論文提出一種新的內容摘要法,此方法能自動地發掘動作庫(即動作截取器捕捉大量運動資料而成的資料庫)中之隱藏結構並藉以提出合理的摘要。我們所提出的方法不僅可以捕捉到一段動作的局部特性(亦即相鄰畫格的主要差異),同時還能找到此段動作的整體結構(亦即動作中含有次要動作)。
然而直接對複雜的高維動作資料去作處理不但不容易而且相當耗費時間的成本。因此本方法首先對動作資訊以分群的技術(clustering)將動作分段並對每一段動作予以符號化(symbolization)。於是整段動作即可視為一個動作字串(motion string)。我們再設法以重複類型(repeating pattern)的分析來找出此動作字串中之隱藏的結構。隨著隱藏結構的發現,我們用以產生上下文無關文法(context free grammar)來簡潔明瞭化的階層式表達此動作。然後利用本方法所產生出來的文法,可以用來架構出此段動作之靜態摘要(summary)和動態濃縮(skimming)動畫。最後我們可以因此透過聚焦的部份(highlight)或摘要的段落(summary sequence)來快速地瀏覽一段動畫;也可以使用少數挑選出來的關鍵畫格來做說明它;以及讓我們從它粹取出來具有意義的子段落中達到了解與體會它的動作。
Latent structures exist in sequences ranging from biosequence, music, human motion to various real-world data. Such hidden information provides a more flexible way to model and use the original input data. In the thesis, we present a method to discover the latent structure and then to infer the hidden knowledge of the given skeletal animation (i.e. motion capture data). The proposed approach not only captures the local characteristics (i.e. the variation between two consecutive frames) of a given motion sequence, but also discovers its global structure (i.e. the sub-actions of an action).
It is difficult and time-consuming to mine the high-dimensional data directly. Therefore, given a motion sequence, we first convert it into motion units called symbols through a cluster-based symbolization process. Consequently, the input sequence could be regarded as a motion string. Then our method discovers the latent structure based on an analysis of the repeating patterns of the motion string. Once the latent structure has been discovered, a grammar could be generated for obtaining a compact and hierarchical representation of the given sequence. Using the grammar that is produced by our method, we can provide both animation skimming and summary of the given animation. Therefore, an animation can be browsed by its highlights or summary sequence quickly; an animation can be illustrated with few selected keyframes; and we can understand and describe an animation via its meaningful sub-sequences.
[1] Arikan, O. and Forsyth, D. A. 2002. Interactive motion generation from examples. ACM Transactions on Graphics 21, 3, 483–490.
[2] Assa, J., Caspi, Y., and Cohen-or, D. 2005. Action synopsis: pose selection and illustration. ACM Transactions on Graphics 24, 3, 667–676.
[3] Brown, W. M., Cronk, L., Grochow, K., Jacobson, A., Liu, C. K., Popovic, Z., and Trivers, R. 2005. Dance reveals symmetry especially in young men. Nature 438, 7071, 1148–1150.
[4] Cassell, J., Vilhjalmsson, H. H., and Bickmore, T. 2001. Beat: the behavior expression animation toolkit. In SIGGRAPH’01: Proceedings of the 28th annual conference on Computer graphics and interactive techniques. ACM Press, New York, NY, USA, 477–486.
[5] Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai, A., and Abhi Shelat. 2005. The smallest grammar problem. IEEE Transactions on Information Theory 51, 7, 2554–2576.
[6] Chiu, C.-Y., Chao, S.-P., Wu, M.-Y., Yang, S.-N., and Lin, H.-C. 2004. Content-based retrieval for human motion data. Journal of Visual Communication and Image Representation 15, 3, 446–466.
[7] Cormode, G. and Muthukrishnan, S. 2005. What’s hot and what’s not: tracking most frequent items dynamically. ACM Transactions on Database Systems 30, 1, 249–278.
[8] Ginsburg, S. and Lynch, N. A. 1976. Size complexity in context-free grammars forms. Journal of the ACM 23, 4, 582–598.
[9] Ginsburg, S. and Lynch, N. A. 1977. Derivation complexity in context-free grammar forms. SIAM Journal on Computing 6, 1, 123–138.
[10] Hanjalic, A. and Zhang, H. 1999. An integrated scheme for automated video abstraction based on unsupervised cluster-validity analysis. IEEE Transactions on Circuits and Systems for Video Technology 9, 8, 1280–1289.
[11] Hopcroft, J. E., Motwani, R., and Ullman, J. D. 2000. Introduction to Automata Theory, Languages, and Computation. Addison Wesley.
[12] Hsu, J.-L., Chen, A. L. P., and Liu, C.-C. 1998. Efficient repeating pattern finding in music databases. In CIKM’98: Proceedings of the seventh international conference on Information and knowledge management. ACM Press, New York, NY, USA, 281–288.
[13] Hsu, J.-L., Liu, C.-C., and Chen, A. L. P. 2001. Discovering nontrivial repeating patterns in music data. IEEE Transactions on Multimedia 3, 3, 311–325.
[14] Huang, K.-S., Chang, C.-F., Hsu, Y.-Y., and Yang, S.-N. 2005. Key probe: A technique for animation keyframe extraction. The Visual Computer 21, 8-10, 532–541.
[15] Jain, A. K. and Dubes, R. C. 1988. Algorithms for clustering data. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.
[16] Kim, T. H., Park, S. I., and Shin, S. Y. 2003. Rhythmic-motion synthesis based on motion-beat analysis. ACM Transactions on Graphics 22, 3, 392–401.
[17] Kovar, L. and Gleicher, M. 2004. Automated extraction and parameterization of motions in large data sets. ACM Transactions on Graphics 23, 3, 559–568.
[18] Kovar, L., Gleicher, M., and Pighin, F. 2002. Motion graphs. ACM Transactions on Graphics 21, 3, 473–482.
[19] Lee, J., Chai, J., Reitsma, P. S. A., Hodgins, J. K., and Pollard, N. S. 2002. Interactive control of avatars animated with human motion data. ACM Transactions on Graphics 21, 3, 491–500.
[20] Lee, K. H., Choi, M. G., and Lee, J. 2006. Motion patches: Building blocks for virtual environments annotated with motion data. ACM Transactions on Graphics 25, 3, to appear.
[21] Lim, I. S. and Thalmann, D. 2001. A key-posture extraction out of human motion data. In Proceedings of 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2001), 1167–1169.
[22] Lin, J., Keogh, E., Lonardi, S., Lankford, J. P., and Nystrom, D. M. 2004. Visually mining and monitoring massive time series. In KDD’04: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM Press, New York, NY, USA, 460–469.
[23] Liu, F., Zhuang, Y., Wu, F., and Pan, Y. 2003. 3d motion retrieval with motion index tree. Computer Vision and Image Understanding 92, 2, 265–284.
[24] Lo, Y.-L. and Lee, W.-L. 2004. Linear time for discovering non-trivial repeating patterns in music databases. In ICME’04: Proceedings of the IEEE International Conference on Multimedia and Expo 2004. 293– 296.
[25] McGarry, K. 2005. A survey of interestingness measures for knowledge discovery. Knowledge Engineering Review 20, 1, 39–61.
[26] McNeill, D. 1992. Hand and Mind: What Gestures Reveal about Thought. University Of Chicago Press.
[27] Muller, M., Roder, T., and Clausen, M. 2005. Efficient content-based retrieval of motion capture data. ACM Transactions on Graphics 24, 3, 677–685.
[28] Muller, W. and Schumann, H. 2003. Visualization methods for time-dependent data- an overview. In Proceedings of 2003 Winter Simulation Conference. 737–745.
[29] Multon, F., France, L., Cani-Gascuel, M.-P., and Debunne, G. 1999. Computer animation of human walking: a survey. Journal of Visualization and Computer Animation (JVCA) 10, 39–54. Published under the name Marie-Paule Cani-Gascuel.
[30] Nevill-Manning, C. G. and Witten, I. H. 1997. Identifying hierarchical structure in sequences: A linear-time algorithm. Journal of Artificial Intelligence Research 7, 67–82.
[31] Oh, J., Wen, Q., Lee, J., and Hwang, S. 2004. Video Data Management and Information Retrieval. IRM Press, Chapter Video Abstraction, 321–346.
[32] Omoigui, N., He, L., Gupta, A., Grudin, J., and Sanocki, E. 1999. Time-compression: systems concerns, usage, and benefits. In CHI ’99: Proceedings of the SIGCHI conference on Human factors in computing systems, ACM Press, New York, NY, USA, 136–143.
[33] Park, M. J. and Shin, S. Y. 2004. Example-based motion cloning. Computer Animation and Virtual Worlds 15, 3-4, 245–257.
[34] Roddick, J. F. and Spiliopoulou, M. 2002. A survey of temporal knowledge discovery paradigms and methods. IEEE Transactions on Knowledge and Data Engineering 14, 4, 750–767.
[35] Silberschatz, A. and Tuzhilin, A. 1996. What makes patterns interesting in knowledge discovery systems. IEEE Transactions on Knowledge and Data Engineering 8, 6, 970–974.
[36] Stone, M., DeCarlo, D., Oh, I., Rodriguez, C., Stere, A., Lees, A., and Bregler, C. 2004. Speaking with hands: creating animated conversational characters from recordings of human performance. ACM Transactions on Graphics 23, 3, 506–513.
[37] Wijk, J. J. V. 2006. Views on visualization. IEEE Transactions on Visualization and Computer Graphics 12, 4, 421–433.
[38] Yu, C.-C. and Chen, Y.-L. 2005. Mining sequential patterns from multidimensional sequence data. IEEE Transactions on Knowledge and Data Engineering 17, 1, 136–140.